
www.manaraa.com

DOCUMENT RESUME

ED 290 438 IR 012 986

AUTHOR Cunningham, Robert E.; And Others
TITLE Chips: A Tool for Developing Software Interfaces

Interactively.
INSTITUTION Pittsburgh Univ., Pa. Learning Research and

Development Center.
SPANS AGENCY Office of Naval Research, Arlington, Va.
REPORT NO TR-LEP-4
PUB DAM Oct 67
CONTRACT N00014-83-6-0148; N00014-83-K-0655
NOTE 63p.
PUB TYPE Reports - Research/Technical (143)

EDRS PRICE
DESCRIPTORS

IDENTIF7ERS

ABSTRACT

MF01/PC03 Plus Postage.
*Computer Graphics; *Man Machine Systems; Menu Driven
Software; Programing; *Programing Languages
Direct Manipulation Interface' Interface Design
Theory; *Learning Research and Development Center;
LISP Programing Language; Object Oriented
Programing

This report provides a detailed description of Chips,
an interactive tool for developing software employing
graphical/computer interfaces on Xerox Lisp machines. It is noted
that Chips, which is implemented as a collection of customizable
classes, provides the programmer with a rich graphical interface for
the creation of rich graphical interfaces, and the end-user with
classes for modeling the graphical relationships of objects on the
screen and maintaining constraints between them. This description of
the system is divided into five main sections: () the introduction,
which provides background material and a general description of the
system; (2) a brief overview of the report; (3) detailed explanations
of the major features of Chips; (4) an in-depth discussion of the
interactive aspects of the Chips development environment; and (5) an
example session using Chips to develop and modify a small portion of
an interface. Appended materials include descriptions of four
programming techniques that have been sound useful in the development
of Chips; descriptions of several systems developed at the Learning
Research and Development Centel tsing Chips; and a glossary of key
terms used in the report. (EW)

Reproductions supplied by EDRS are the best that can be made
from the original document

** g************* *******

www.manaraa.com

University of Pittsburgh
LEARNING RESEARCH AND DEVELOPMENT CENTER

Chips: A Tool for Developing Software Interfaces Interactively

U 5 DEPARTMENT OF EDUCATION
Office of Educational Research and improvement

EDUCATIONAL RESOURCES
)

INFORMATION
CENTEER

111,This document has been reproduced as
received from the person or organization
originating it

0 Minor changes have been made 10 improve
reproduction quality

Points of mew or opinions Stated in I hisdocu
ment 00 not necessarily represent officio!
OERI position or policy

Robert E. Cunningham
John D. Corbett

and
Jeffrey G. !Sonar

October, 1987

Technical Report No. LSP-4

This work was supported by the Office of Naval Reseerch. under Contract No.
N00014-83-8-0148 and N00014-83-K-0065. Any opiniom, findings, conclusions, or
recommendations expressed in this report are the .4 of the author.,, anJ do not necessarily
reflect the views of the U.S. Governm at.

Reproduction in whole or part is pAzmitted for any purpose of the Uniteti States
Government.

Approved for public release; distribution unlimited.

2 BEST COPY AVAILABLE

www.manaraa.com

CLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION / AVAILABILITY OF REPORT

AApproved for public release; distribution
unlimited.

2b DECLASSIFICATION /DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBERM

UPITT/LRDC/ONR/LSP-4

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION
Learning Research & Development
Center, Univ. of Pittsburgh

6b OFFICE SYMBOL
(If applicable)

7a NAME OF MONITORING ORGANIZATION
Personnel & Training Research Programs
Office of Naval Research (Code 1142PT)

6c ADDRESS (City, State, and ZIP Code)

3939 O'Hara Street
Pittsburgh, PA 15260

7b ADDRESS (City, State, and ZIP Code)

800 Worth Quincy Street
"xlington, VA 22217-5000

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

8b OFFICE SYMBOL
(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

N00014-83-K-0655
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO

61153N

PROJECT
NO

RR04206

TASK
NO

RR04206-00

WORK UNIT
ACCESSION NO

NR442c524
11 TITLE (Include Security Clarsification)

CHIPS: A tool for Developing Software Interface Interactively
12 PERSONAL AUTHOR(S)

Robert E. Cunningh.0 John D. C. .- and Jeffrey G. Bonar
13a TYPE OF REPORT

Technj .'
13b TIME COVERED

FROM TO
14 DATE OF REPORT (year, Month, Day)
1987 October 23

15 PAGE COUNT

65
16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identif' by block. number)
Human/computer interfaces; Graphical interface; Direct manipu
lation interface- Visual programming- Object-oriented programming; user intetface management systems, rrogramming
-. ogn-nt

FIELD GROUP SUB-GROUP

19 ABSTRACT (Continue on reverse if necftsiacy arrl identify by block number) Chips is an_interactive tool for d,avelop-ing software employing grapnicai human/computer interlaces on Aerox Lisp macnines. ror
the programmer, Chips provides a rich graphical interface for the creation of rich graphical
interfaces. In the service of an end user, Chips provides classes for modeling the graphi-
cal relationships of objects on the screen and maintaining constraints between them. Several
large applications, including tutors for programming and electricity, have been developed wit)
Chips.

Chips is implemented as a collection of customizable classes in Loops, the objected-oriented
extension to Interlisp-D. The three fundamental classes provided by Chips are DomainObject,
DisplayObject, and Substrate. Dc inObject defines objects of the application domain,
DisplayObject defines mouse- sensitive graphical objects, and Substrate defines specialized
windows for displaying and storing collections of instances of DioplayObject.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT

On UNCLASSIFIED/UNLIMITED SAME AS PPT DTIC USERS
21 ABSTRACT SECURITY CLASS FICATION

Unclassified
22b TELEPHONE (Include Am.-Code)

(202)696-4318
22c OFFICE SYMBOL

ONR 1142PT

22a NAME OF RESPONSIBLE INDIVIDUAL

Susan M. Chipman

DD FORM 1473, 84 MAR 83 APR edition may be usea until exhausted
All other editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

www.manaraa.com

Chips: A Tool for Developing Software Interfaces Interactively

Robert E. Cunningham, John D. Corbett, and
Jeffrey G. Bonar

Learning Research and Development Center
3939 O'Hara Street

University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Technical Report No. LSP-4

This work was supported by the Office of Naval Research, under Contract No.
N00014-83-6-0148 andN00014-83-K-0655. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the authors, and do not necessarily
reflect the views of the U.S. Government.

Reproduction in whole or part is permitted for any purpose of the United States
Government.

Approved for public release; distribution unlimited.

www.manaraa.com

Chips Technical Report

Abstract
Chips is an interactive tool for developing software employing graphical human/computer interfaces
on Xerox Lisp machines. For the programmer, Chips provides a rich graphical interface for the
creation of rich graphical interfaces. In the service of an end user, Chips provides classes for modeling
the graphical relationships of objects on the screen and maintaining constraints between them
Several large applications have been developed with Chips including intelligent tutors for
programming and electricity.

Chips is implemented as a collection of customizable classes in the Loops object-oriented extensions to
Interlisp-D. The three fundamental classes provided by Chips are:

DomainObject which defines objects of the application domain the domain for which the
interface is being built and ties together the various functionalites provided by the Chips
system,

DisplayObject which defines mouse-sensitive graphical objects, and

Substrate which defines specialized windows for displaying and storing collections of instances of
DisplayObject.

A programmer creates an interface by specializing existing DomainObjects and drawing new
DisplayObjects with a graphics editor. Instances of DisplayObject and Substrate are assembled on
screen to form the interface. Once the interface has been sketched in this manner, the programmer
can "build inward," creating all cther parts of the application through the objects on the screen. Chips
makes this easy by supplying simple and direct access to the source code and data struct,ires of an
application. Chips not only allows one to build powerful graphical interfaces, but provides the same
sort of powerful graphical interface to the programmer building the interface.

Keywords: human/computer interfaces, graphical interface, direct manipulation interface, visual
programming, object-oriented programming, user interface management systems, programming
environments.

Typographic Conventions
Technical terms appearing in the glossary are italicized and underlined upon first use, i.e display.
Menu selections are printed in a sans-serif font, i.e. Edit Mechanism. Class names are printed in a bold
faced sans-serif font, i.e. Substrate.

5

www.manaraa.com

Chips Technical Report

Acknowledgments
We would like to thank several people who provided important help and support during the
development of Chips.

We would like to acknowledge several people who developed applications using Chips, often putting up
with and working around deficiencies and bugs in early versions of the system. They provided many
helpful suggestions that were incorporated into the design, discovered problems that we had missed,
and provided much needed evidence that our ideas were on the right track. These diligent folks are
Andrew Bowen, Joyce Friel, Dan Jones, Steve Kalinowski, Debra Logan, Bob Merchant, and Jamie
Schultz.

Stewart Nickolas contributed important ideas to the project as well as providing inspiration for what
can be done with Xerox Lisp machines.

Arlene Weiner tried her best to teach us how to write. In the brief time she had to work with us, she
helped us decide upon our audience and present our ideas coherently.

Doug Roesch did early work with the latest version of Chips and created a lab for beginning Chips
users.

Marty Kent worked on Flow Chips, a precursor to Chips, and left us with many good ideas.

Joyce Friel, Stewart Nickolas, and Doug Roesch read and commented on earlier drafts of this report.
Dr. Alan Lesgold, the associate director of the Learning Research and Development Center, is
responsible for the resources we use in our work and responsible that those who grant us resources are
satisfied with all our work in the Intelligent Tutoring Systems Group. Chips could have easily been
written off as a fruitless digression without his faith in us and his vision. Alan provided much needed
support and guidance, both professionally and personally, as well as creating an environment in which
we could do our ',work. This project could not have happened without 'aim.

Jeff Bones started and managed the Chips project. The Chips system itself was designed and
implemented in collaboration between John Corbett and Bob Cunningham. We gratefully
acknowledge, however, that Chips was built using as much of Interlisp-D and Loops as we could
rationally incorporate. Bob Cunningham did the lion's share of the writing of this document. John
Corbett wrote earlier drafts, and participated in the writing.

6

ii

www.manaraa.com

Chips Technical Repot.

Table of Contents
1. Introduction .1

1.1 The Contribution of Chips 1
1.2 Current Approaches to Interface Development1
1.3 The Chips Approach to Interface Development 2

1.3.1 Exploring and Testing Interface Designs. 2
1.3.2 Objet- Oriented Interface Defign .2
1.3.3 Controlling Programs by Manipulating Pictures 3
1.3.4 Mocking Up an Interface 3
1.3.5 Establishing Relationships Between Application Objects 3

1.4 Interlisp-D/Loops Implementation 32. Overview .4
3. Chips Structures 5

3.1 Domain Objects as Instances 5
3.1.1 Display Objects' Graphical Data Structure 5
3.1.2 Multiple Display Objects and Multiple Picture Specifications 7
3.1.3 Physical Connectors 8
3.1.4 Graphical Relationships 8

3.2 The Substrate 8
3.3 The Event Queue 9
3.4 Connections 10
3.5 Mechanisms 12
3.6 Events Streams and Display Streams 13
3.7 Saving Chips Classes 14

4. Chips Interactive Environment 15
4.1 Chips Icon 15
4.2 Chips Browser 17
4.3 Modifying an application through the development interface 20

4.3.1 Displaying overlappii.g display objects 20
4.3.2 Interactive editing of display object instances 22
4.3.3 Options available by selecting a substrate 26
4.3.4 The Display Editor 30

5. A session with Chips 33
5.1 Creating a new domain object .33
5.2 Editing 1.-he display object of a class of domain object 33

5.2.1 Using the Display Editor 34
5.2.2 Defining the figure picture of a display object .34
5.2.3 Defining the mask picture ofa display object 34
5.2.4 Defining the map picture of a display object 35

5.3 Using a domain object with a substrate .36
5.4 Interactively changing a dispi v object 37
5.5 Conclusion 39

References 41
Appendix A: Special Programming Techniques Appendix lA

A.1 A General Caching Function Appendix lA
A.2 Self-Inspecting Code Appendix 1A
A.3 Fast Bitmap Intersection Appendix lA
A.4 The EditWhen Macro Appendix 2A

Appendix B: Applications Appendix 1BB.1 Digital Logi' Appendix 1B
B.2 Bridge VPL Appendix 21?B.3 Mho Appendix 6BB.4 Voltaville

......

Appendix 9BGlossary Glossary 1

7 111

www.manaraa.com

Chips Technical Report

1. Introduction
Creating good human/computer interfaces is a notoriously difficult task. Furthermore, our current
best estimates indicate that interface design consumes 50% of the time on a large programming
project. Even with that large time budget, the interfaces produced are usually difficult to debug and
modify. This problem is compounded by the lack of any theory, or even consistent design guidelines,
that could guide the development of interfaces. Even the most carefully thought out interface is likely
to need some redesign when tried with real users.

Chips has been created to simplify the development of sophisticated interfaces. In particular, Chips
can cut the time needed to implement a prototype interface by a factor of ten. Chips allows interfaces
to be designed, thoroughly tested, and then discarded for more effective designs. With the extended
amount of empirical experience afforded by the use of Chips, there is the possibility for a
comprehensive theory of interface to emerge.

To create an interface in Chips, the programmer uses graphic editors to mock up interface designs by
drawing and arranging objects that appear on the computer's display. The application underneath the
interface is created by building inward from this mock-up. Typically, a Chips user is building a direct
manipulation interface (see, for example, Hutchins, et al. [1986].) A direct manipulation interface
allows the user to command the computer by moving and selecting icons designed to behave like the
objects they represent.

1.1 The Contribution of Chips

Chips supports the development of direct manipulation interfaces directly. Chips objects can be
created, displayed, and manipulated directly. All the difficult algorithms for smoothly dragging an
icon across the screen, having that icon interact correctly with other icons it moves over and near, and
connecting mouse or keyboard behavior to underlying functionality are provided in Chips. Chips
provides extensive support for editing the properties and behavior of an application interactively,
through the interface itself. Finally, Chips allows an interface to be simply saved and restored. In
summary, Chips allows the programmer to treat an interface as a object foi inspection, manipulation,
and design.

The key potential of Chips is that it provides a sufficiently high level interface design language that a
theory of interface design can emerge. In particular, Chips supports a rich set of syntactic
relationships for objects in a diagram. Although the key difficulty in a theo-y of interface design is
relating the syntax of the diagram to the underlying semantics of the domain being represented in the
diagram, the systematic syntax of Chips' diagrams allows for a direct attack on representing
semantics. The phrase "syntactic relationships in a diagram" is meant to refer to the 2-D physical
relationships between the graphic elements in a diagram. For example, one icon may be above
another icon, connected to another icon with a line, or have various mouse-sensitive areas (places
where a user can button and invoke a program).

1.2 Current Approaches to Interface Development

Most interfaces are written in traditional programming languages. These languages supply primitive
elements, such as commands for drawing lines and printing text, leaving the programmer to construct
more sophisticated objects such as menus. This is time consuming and often leads to complex and
idiosyncratic interfaces.

User Interface Management Systems (UIMS) [italicized underlined words also appear in the glossary]
improve this situation by packaging common elements of interfaces so they can be reused. In addition,
lithe UIMS itself has an interactive interface, it may be possible to create entire application interfaces
without programming.

1

www.manaraa.com

Chips Technical Report

For many applications, a good UIMS is sufficient, however it is not clear what belongs in a good L IMS.
So rather than providing several specific interface elements, Chips provides two generic interface
elements aria' tools for specializing them.

1.3 The Chips Approach to Interface Development
To create an interface in Chips, the programmer uses graphics e; ors to mock up interface designs by
drawing and arranging the objects that appear on the computer's display. It is only a slight
over-simplificadon to say the application is created by drawing it on the display and adding
functionality by "building inward."

1.3.1 Exploring and Testing Interface Designs
Because so little is known about interface design. , it is useful to try out various designs, especially with
potential users [Rosson, et. al., 1987]. The cost of this exploratory approach is prohibitive with
traditional programming languages; this is true even with systems designed for exploratory
programming such as he Interlisp-D programming environment [Sheil, 1983] unless the programmeris a real master of interface design. Using Chips, one can e-neriment with many interface designs in
the time it takes to build a single interface without Chips.

For example, for the programming tutor Bridge, we designed and implemented six versions of a visual
programming language in three months. We estimate that this would have taken at least a year and a
half without Chips.

1.3.2 Object-Oriented Interface Design
Objects on the display are more than pictures; they are objects that respond to the user's actions, such
as selection with the mouse, and interact wit's oue another. For a complete introduction to
object-oriented programming see Smalltalk-80: the Language and Its Implementation [Goldberg andRobson, 1983].

Object-oriented programming is based on the notion of objeca interacting by sending messages to oneanother. An object is a semLautonomous combination of a data structure and pre-edures forresponding to messages. Message names, unlike procedure names in most programming languages,
need not be unique, thus objects of differentclasses can use different methods to respond to a particularmessage.

A new class of objects can be defined by specifying only how it differs from an existing class of objects.
The new class is said to inherit everything that it does not specifically define. The new class is called a
specialization of those classes used to define it.

The generic interfkce elements referred to above are classes of objects; they are named DomainObject,
DisplayObject, and Substrate. Objects which are instances of the class DomainObject or any
specialization of the class DomainObject are called domain objects. Objects which are instances of the
class DisplayObject or any specialization of the class DisplayObject are called display objects.
Similarly, objects which are instances of class Substrate are called substrates. The terms domain
object, display object, and substrate are used to refer to instances of these classes. Classes will be
referred to explicitly and printed in a bold sans-serif font, i.e. DomainObject.

Substrates are objects which appear as rectangular regions on the display. they are specialized
windows used to create domain objects and display their associated display objects. Domain objects
are focal points that allow the combination of the various behaviors of the the Chips system. Displayobjects are mouse-sensitive objects with arbitrary pictures. DomainObject, DisplayObject, and
Substrate are the basic classes for objects in interfaces. They inherit many of the common aspects of

9
2

www.manaraa.com

Chips Technical Report

graphical into aces, yet the programmer can specialize any aspect of them and thus is not locked into
the existing ways of doing things.

1.3.3 Controlling Programs by ManipulatingPictures
Chips is especially useful for constructing direct manipulation interfaces (DMI). These allow the user
to command the computer by moving and selecting cartoon-like icons designed to behave somewhat
like the objects they represent. The Apple Macintosh employs direct manipulation extensively and is
widely considered one of the easiest computers to use for people who are not necessarily computer
specialists. The advantages of direct manipulation are widely recognized, [Hutchins, et. al., 19861.

Unfortunately, DMI are often difficult to construct and difficult to modify once they are constructed
The programmer needs to write programs to create the pictures, move the pictures a.:ound the screen,
determine what picture the mouse is pointing to, what pictures on the screen represent, what to do
when an icon is selected, and so forth. Although programming languages provide commands for
drawing geometric figures and ways of sensing the mouse, these basic capeNilities are far removed
from the task ofdirectly man_pulating graphical objects.

Chips classes provide these aspects of DMI automatically. Once objects from Chips are created and
displayed, they can be manipulated directly; selecting an object with the mouse cursor causes that
object to animate and follow the cursor around the display or causes that object to display a menu of
operations to be performed on it or on objects related to it.

Chips provides extensive support for editing the properties and behavior of an application
interactively, through the interface itself. Every object of an interface that appears on the screen can
be edited by selecting the object and choosing the aspect of the object to edit. This behavior is useful
throughout the development process, so usually the programmer makes the application interface by
adding behavior and only disables the default behavior when it might confuse unsuspecting users by
allowing them to stumble into the program code and data structures.

Thus it is easy to assemble objects of the application interface on the display and having done that, to
use these objects to access relevant portions of the application program code and data structures. This
feature of Chips facilitates the entire software development process by providing convenient access to
the program code and data structures; "What You See Is What You Get" moreover, "What You See
You Can Edit."

1.3.4 Mocking Up the Interface

Using direct manipulation, a use- creates an interface by drawing pictures of the interface objects and
arranging them on the screen in appropriate places. The interface can then be saved to a file and
recreated simply by loading the file. This allows a user to effectively mock up an application interface
without programming.

1.3.5 Establishing Relationships Between Application Objects
Chips provides explicit means for establishing connections between domain objects. Chips defines
connections between objects to reflect relationships between those objects both on the display and in
the computer. Chips also defines mechanisms which allow aspects of a domain object to be
implemented with a collection of domain objects, like the clockwork inside a clock.

1.4 Interlisp-D/Loops Implementation

Chips is an integrated extension to the Interlisp-D/Loops programming environment. Loops [Bobrow
and Stefik, 19811 provides object-oriented programming with multiple inheritance. Both Loops and
Interlisp-D [Sannella, 19R5 provide a very sophisticated programming environment including
graphical browsers and program inspection facilities. They run on Xerox 1100 Series workstations.

10 3

www.manaraa.com

Chips Technical Report

Chips performs well on the Xerox 1186, which is one of the least expensive and least powerful of
workstation class computers. In light of this, we feel the concepts demonstrated by Chips are practical
for almost any workstation.

2. Overview
The remainder of this report discusses Chips from Several different perspectives. Section 3, Chips
Structures, gives a detaile1 explanction of the major features of Chips. See ion 4, Chips Interactive
Environment, provides au in depth discussion of the interactive aspects of the Chips development
environment. Section 5, A Session with Chips, preserts an example session using Chips to develop
and modify a small portion of an interface. Appendix A, Special Programming Techniques,
describes four programming techniques that we have found useful in the development of Chips:
self-inspecting code, a general purpose caching scheme, a fast bitmap intersection algorithm, and the
EditWhen macro. Appendix B, Applications, describes several systems developed at the Learning
Research and Development Center using Chips. The final section, Glossary, describes key terms used
in this report.

4 11

www.manaraa.com

Chips Technical Report

3. Chips Structures
In this section the major components of the Chips system are presented: Domain Objects, Display
Objects, Picture Specifications, Substrates, Event Queues, Connections, Mechanisms, Event Streams,
and Display Streams. Finally, the strategy used for saving Chips objects is presented.

3.1 Domain Objects as Instances

Domain object.° are instances of subclasses of the class DomainObject that combine the functionality
provided by Chips through inheritance, including: displaying themselves on the screen, animating
themselves, connecting themselves to other domain objects, defining their behavior ir. terms of other
domain objects, saving themselves to a file, and editing their behavior and properties interactively

3.1.1 Display OLjects' Graphical Data Structure
Each instance of a subclass of DomainObject defines one or more instances of the class DisplayObject
that determine how the domain object is to be displayed. The domain object itself corresponds to an
object in the application domain, while its display abject determines how the domain object will
display itself on the screen. For example, in our digital circuit editor, there is a class of domain object
called LightBulb. It has display objects associated with it that determine how it will sh--, up on the
screen, but the domain object instance itself determines the object's behavior. It determines how to
process inputs, controls its display objects in response to inputs, and connects to other domain objects.
Each class of domain object defines one or more instances of display object. These display objects are
stored on the domain object class's IV, displayObiects as an association list of the form:

((tag1 displayObjectlnstance1) (tagn displayObjectInstancen))

Each instance of a domain object class stores one or more display objects in its displayObjects IV.
These display object instances are copies of those stored on its class's displayObjects IV. Each display
object stored with a particular domain object instance is currently displayed on the screen. When a
display object is removed from the screen, it is also removed from its corresponding ',main object.

Each display object defines a figure, mask, and map, stored in the IVs figure, mask, and map,
respectively. The figure and mask are used for displaying instances in a substrate and the map is used
for determining what part of an instance is located where, typically to see what part of a display object
has been selected with the mouse cursor.

Each display object also defines several other IVs including:

object the domain object that the display object represents

host the substrate instance that contains the display object

displayStream the display stream the object is displayed on (usually whe window of its host)

position the position in the display stream that the display object is located

editor the editor that is used to modify the display object; usually an instance of the class
DisplayEditor

responsesToSelecti on a form that determines the display object's response to being selected with the
mouse cursor

physicalConnectors a list of the physical connectors associated with the display object

12 5

www.manaraa.com

Chips Tech.:2 feel Report

The figure, mask, and each element of the map of a display object is stored as an instance ofPicture Specification or some subciass of Picture Specification. Each instance of Picture Specification
has three Pis:

displayReprescntation the represen' that is used to display the picture on the screen; the
default display representation is a bitni .cowing for fast display using BITBLT

editRepresentation a representation hat allows the picture to be edited, presumably in a more
convent.-` manner that the bitmap; the default edit representation is a list of vector graphic
commands in a format that is recognized by the Display Editor

offset a position that describes the location of the picture specification relative to the lower left
corner of the display object it is stored in

Thus, the actual representations of the pictures are separated from the operations necessary fordisplayin" and manipulating objects on the screen. Each identical copy of a display object points tothe same ,:cture specification instances; new picture specification instances are only created asrequired due to local modifications made to a particular display object.

Because Interlisp-D bit"naps are rectangular and have only one bit per pixel, it takes two bitmaps torepresent a figure with at' arbitrary shape. One instance of P. --tureSpecification, the figure, defines
the way the display object will appear on the display; a second instance, the mask of the display object,dermal which areas of the display object are to be opaque and which transparent. The mask is blackonly where the corresprnding location in the figure is considered opaque. For example, a Smile Face
display object might have the following figure and mask (see figure 1 below):

-71

s2
(a) (b)

Figure 1. (a) The figure and (b) the mask of class SmileFace

Using this scheme, it is possible to display a figure of arbitrary shape on an arbitrary background. A
simplified version of the display procedure is to erase the area where the figure is to be placed using
the mask and then paint the figure. This process is illustrated in figure 2 below.

(a) initial background c) after erasing the mask (b) after painting the figure
Figure 2. Procedure for displaying an dis,lay r)ject

Chips does its painting and erasing on a separate bitmap and then paints the result on the screen toavoid the flicker associated with erasing from the screen. This technique is called double buffering.
Note that this procedure does not constrain the figure to be closed nor composed of a single part.Figure 3 shows the possible combinations of figure and mask and what will be displayed on the screenwith each combination.

6 13

www.manaraa.com

Figure ,,-----
C Design

Background

(Design
....,_

Chips Technical Report

1.\.. Design
--._

inui. 17111

T NIL NIL
85+

Figure 3. Displaying a figure with various masks on various backgrounds

The map is a list of elements that name the mouse-sensitive parts of the display object. Each element
contains an instance of PictureSpecification and a tag, a mnemonic way to refer to tha map element.
The map is a list of the form:

(tags PictSpeclnst1

(tag2 PictSpeclnst2) (tag3 PictSpeclnst3

(tag4 PictSpecInst4 ...]

The map is treated as a tree. The root contains the region that bounds the entire display object. The
root is followed by subregions that may in turn have subregions, and so on, that distinguish different
parts of the display object. To determine if a display object has been selected and what part was
selected, a depth-first search is performed on the map. The subregion3 are considered to be contained
in their region.

3.1.2 Multiple Display Objects and Multiple Picture Specifics dons
In Chips, there are two ways of representing various kinds of multiple ltsplay representations with a
particular domain object: multiple display objects and multiple picture specifications.

A domain object may have more than one instance of DisplayObject associated with it, providing more
than one view onto that domain object. This could be used, for example, with a business graphics
application, with a domain object representing gross receipts having a display object that displays a
number in one window, and a barchart representation of the value displayed in another window.

A display object may also have more than one set of picture specification instances associated with it.
Each of the following IVs of display object have a property, tagList, which stores information
concerning alternate picture specification sets and the display object's corresponding behavior when a

Fl 7

www.manaraa.com

Chips Technical Report

particular set is used: figure, mask, map, and physicalConnectors The tagList property stores an
association list of the form:

((tag, forml) ...(tagn forma))

tt _t associates certain forms with corresponding tags. Each display object also has an IV, tag, which
stores the current tag being used.

3.1.3 Physical Connectors

Elements of a display object's map may be physical connectors, establishing the subregion they define
to have special significance to another display object landing on that subregion. This can be used, for
example, to establish physical attachment between display objects. In our digital circuit editor, the
display object for the ANDGate domain object (see figure 4) has threw physical connectors, two
representing the input leads of the and gate and one representing the and gate's outpuw. When one end
ore wire is placed on top of one of these physical connectors, the wire attaches to the associated lead.

Physical Connectors

Figure 4. Physical connectors for the display objectof an ANDGate

Physical connectors are stored in the physical Connectors IV of a display object in the form:

((PictSpecInsti positioni) ... (PictSpecInstn position))

where position is the position of the connector relative co the lower left corner of the display object.
This position is used to line up the display objectswhen establishing physical attachment between two
display objects.

3.1.4 Graphical Relationships

Chips provides several methods to determine graphical relationships between display objects and their
parts. These include methods to determine if a dirlay object or one of its parts is above, below, to the
left of. or to the right of another display object or one of its parts. There are also methods to determine
if a display object or one of its parts intersects, is inside of, occludes, or obscures another display object
or one of its parts.

32 The Substrate

The class Substrate defines instances that create and manage windows for displaying and
manipulating display objects. A substrate senses mouse cursor activity with;n its substrate window
and determines what messages to send to itself or to the instances it contains based on the location of
the mouse cursor and the buttons that are pressed.

Figure 5 below illustrates what e substrate looks like. There are two windows, a substrate window
and a prompt window. The substrate window has the title, "Substrate without a name." The substrate
contains two display objects, one an abstract face, and the other, a text display object with the word
"Foo" contained in a box. Each display object that appears in a substrate represents some domain
object.

15
8

www.manaraa.com

Prompt window

Substrate It- a name

Substrate window._

Chips Technical Report

Title bar

Background

Chip instances

Figure 5. A default substrate insta^ce co,,taining two display objects

Substrates define several IVs including:

fil eComs the name of the file variable that describes the file that the substrate instance is stored on

fileName the name of the file the substrate instance is stored on

window the window that the substrate instance uses to display instances of DisplayObject

contents a list of instances of DisplayObject that are displayed by the substrate

responsesToSelection a form that describes the response to pressing a button while the mouse
cursor is inside the window

A substrate's window stores its Substrate instance on its win.iow property, LoopsInstance.

Substrates keep a list of the display objects they contain. This list is used to to redisplay the window,
to find the display object under the mouse cursor, and to save the display objects and their associated
domain objects to a file..

The substrate instance can also save a description of itself to a file that will cre^ te a window with the
same attributes'when a file containing the description is loaded into the environment. Figure 6 shows
a substrate instance for which several of the parameters, such as the border size, background shade,
and title, were changed from their default values. Modifications made to the substrate instance
interactively can be saved 3.81c1 reproduced.

Figure 6. A substrate instance with parameters different from their default values

3.3 The Event Queue

In Chips, communication between individual domain objects is handled via an event queue. Each
communication is considered an event and is posted on the queue along with a time when the event is
to occur. The events are then processed .n the order of the times declared. This allows events to be
handled asynchronously by a separate process. The event queue was initially developed to avoid the
prct)lems of recursive function calling in complicated simulations [Duisberg, 19861.

Event queues are implemented by the class ChipsAnima. Each instance of the class ChipsAnima has
two IVs:

eventQueue a list of instances of the ,-ecord type, queueEvent, with associated time stamps, stored
as a skew heap

16
9

www.manaraa.com

Chips Technical Report

eventQueueProcess a process that continually polls the eventQueue IV to see if there is an event
whose time stamp indicates that it is time to be processed

When an event queue is established, a process is created that checks the eventQueue IV and sees if
the event on the front of the queue, if there is one, has a time stamp that has expired. If there is such
an event, the process sends the event queue the message ProcessEventQueue that removes the event
from the event queue and sends the message ChangeOccurred to the instance stored in the participant
field of the queueEvent record with the associated parameters. The default event queue, Anima, is
created when Chips is loaded. When Anima is first used, a process is created, called Anima's Queue
Handler.

The record queueEvent has several fields, including:

participant an instance of the class DomainObject to whom communication is to be propagated

author an instance of the class DomainObject that initiated the communication

name an arbitrary tag that is the name of the communication; used to establish different
communication types and to communicate information relevant to the communication
value a value associated with a particular communication

3.4 Connections

Broadly speaking, a workstation screen normally displays a diagram consisting of windows and icons.
Inside the windows are diagrams and text. Certain relationships are implied through what is
displayed. A facility in Chips, called a connection, can be used to make an implied relationship on the
display explicit for the computer. For example, if a windOw contains' road map, a line connecting two
dots might indicate that there is a road between the two cities indicated by the dots. The fact that a
road, displayed as a line, leads to a city, displayed as a dot, can be recorded in a connection between the
road instance and the city instance. When the user makes a connection explicit for an application
program, Chips causes the key relationships depicted graphically to be represented internally. Thus
diagrams on the screen can have a syntax and semantics that both the user and the program share,
and that both can manipulate.

Chips provides a class, Connection, whose instances rerresent relationships between instances of
subclasses of DomainObject. Each instance of Connection has three TVs:

participantnamelist a list of the fOrm:

((participant, . namei) ... (participantr, . named)

where name is some arbitrary tag used for establishing some connection type, or storing information
useful for the participants in a connection, or both; participants are instances of some subclass of
DomainObject.

responsibleObject an instance that is responsible for propagating the communication from a
domain object to the participants in a connection; the default responsible object is the Anima

timeDelay an integer which establishes a time delay in the propagation of the connection; if
non-NIL it is added to the current time before the event is placed on the event queue, thereby causing
the event i.o wait in the event queue until its time arrives; the time delay is expressed in milliseconds
Figure 7 shows the list of participants and names for an instance of PowerSource, from our digital
circuit editor. This power source is connected to an instance of the class Wire. In this example, the

10 17

www.manaraa.com

Chips Technical Report

name is used to determine which physical connectors of the two participants are connected, the output
of the power source and one end of the wire.

Power

Off

L

((#$Wire0079 Output . endPoint2))

Figure 7. Connection between a power source and a wire

Connections store an object that is responsible for informing partie;pants in the connection that some
change has occurred that is relevant to the connection, the defaul s the event queue. A time delay,
useful for simulations, may also be established for a connection and causes a delay before the
propagation of the change to the participant. Connections can be used to represent many kinds of
relationships between domain objects, such as physical attachment or containment.

The class ConnectionMixin provides the capability of connections to a class of domain object.
Connections are established between a domain object and other domain objects. Each instance of
DomainObject with connection capability stores a list of instances of the class Connection in an IV
called connections. When a connection is established for a particular domain object, an instance of
Connection is created and stored with that domain object.

When a domain object wants to propagate a connection, it sends the connection instance the message
AnnounceChange, either directly or by sending itself the message PutValueWithConnection or
AnnounceCHange. The connection then sends the message ChangeOccurred to the instance stored in
its responsibleObject IV for each participant in the participant/nametist IV of the connection. The
message ChangeOccurred typically takes the parameters author (the domain object initiating the
communication), participant, name, value (the value that has changed), and time (the time that the
propagation is to happen, calculated by adding the value of the timeDelay IV of the connection to the
current time).

Figure 8 shows a simple circuit containing a power source and a light bulb. Note, in our digital circuit
editor, grounding is implicit.

Figure 8. A simple circuit showing connections

In this example, a connection has been established between the output of the power source and one end
of the wire. Another connection has been established between the other end of the wire and the input
of the light bulb. Whenever a change is made to the output of the power source, in this case turning it
on, the change is automatically propagated, through the wire, to the input of the light bulb, which
responds to the change by lighting up.

18

www.manaraa.com

Chips Technical Report

The responsible object of a connection is, by default, the event queue. Another kind of responsible
object provided by Chips is a Spy. Instances of the class Spy may :le installed as the connection's
responsible object and may be used to redirect connection changes or to do recording. By default, they
just beep when a connection announces a change, and then pass the message to the event queue.
When an instance of the dale Spy is installed in a particular connection, the old value of the
responsibleObject IV of that connection is pushed on a stack on the IV property previousValues of the
responsibleObject IV of the connection instance. Removing a spy pops the stack, re-installing the old
responsible object. This provides an easy way to turn recording on and off during an application, for
example.

3.5 Mechanisms

It is also useful to represent the relationship between an object and its parts. The mechanism of adomain object is a collection of instances of DomainObject, usually connec'ed together, representing
that domain object's internal mechanism. Through the connections, the coil...,ction of domain objects
can act as "the clockwork inside the clock."

The class MechanismMixin provides the ability for a domain object to have a mechanism. It provides
IVs to domain objects including:

mechanism a list of instances of subclasses of the class DomainObject which define this domain
object's behavior.

mechanismEditor an instance of the class MechanismEditor, used to define and modify the
mechanism of a domain object

If a domain object class has a mechanism defined for it, whenever an instance of that class is to becreated, an isomorphic copy of the mechanism must be created, with all connections maintained.
Chips provides a Mechanism Editor to define and modify the mechanism associated with a particular
subclass of DomainObject. The class MechanismEditor is a specialization of substrate with behavior
that supports the definition of mechanisms. When the Mechanism Editor is opened, the mechanism of
the selected domain object is displayed along with an internal connector for each physical connectordefined for the domain object. Physical connectors provide access to the domain object's internal
mechanism for other domain objects. These physical 4onnectors are represented by instances of theclass IntemalConnettor. These instances set up a connection between the domain object's external
connectors and its internal mechanism.

When a domain object with a mechanism is sent the message ChangeOccurred, it forwards the
message to the appropriate instance of InternalConnector, which in turn sends it to the domain object's
that define the mechanism.

An example of the use of mechanisms is the class NANDGate, which was defined for our digital circuit
editor. Its display object is shown in figure 9.

Figure 9. The display object of the class NANDGate

Display objects of the class NANDGate have three physical connectors, two on the left for input and one
on the right for output. The class's behavior can be defined in terms of instances of two other classes,ANOGate and NOTGate. Figure 10 shows the mechanism of the class NANDGate.

12 19

www.manaraa.com

Chips Technical Report

Figure 10. The mechanism of the class NANDGate

Each physical connector of the class NANDGate is represented by an instance of Internal Connector,
shown in figure 10. The Mechanism Editor automatically positions the instances relative to where the
physical connector appears on the domain object's display object.

The user create3 the mechanism for the selected domain object class by selecting instances of the
classes of domain objects that are to be included in its definition, dragging their display objects to an
appropriate position, and connecting them with wires. The mechanism may then be saved to the
domain object's class by selecting the Save Class Mechanism option from the substrate menu.

When an instance of NANDGate is used in a circuit, it processes signals sent to it by sending them to
the instances defining its internal mechanism, via its internal connections. Figure 11 shows a
NANDGate domain object in action.

Figure 11. Example using the NAND Gate

3.6 Event Streams and Display Streams

Chips generalizes the input and output facilities of Interlisp-D to include object-oriented event
streams and display streams, providing a straightforward way of performing 110 redirection.

Instances of the class Event Stream may be passed to some methods expecting input from the mouse or
keyboard, such as the method for dragging a display object around the screen, providing direct control

20 13

www.manaraa.com

Chips Technical Report

of the input from either the mouse or the keyboard. The default event stream is an instance of the
class Event Stream, called Mouse, which polls the mouse each time it is asked to update itself. This
class can be specialized to get coordinates from a file, calculate coordinates based on some
pre-determined path, poll the keyboard, etc.

Instances of the class Display Stream, likewise, may be passed to certain methods that expect a display
stream on which to perform output. One useful example of this is the class Buff eredDisplayStream,
which, instead of doing output directly to the screen, does its output to a scratch bitmap and displays
on the screen when sent the message, Update.

Note: we have not developed display streams very much. They are included as a point of departure for
further exploration.

3.7 Saving Chips Classes

When a file that contains Chips classes is saved, certain values of instance variables and class
variables may need to be specially saved. Values such as bitmaps, instances, user-datatypes, arrays,
hash tables, windows, and circular list structures will not be saved correctly without special handling.
Chips defines several methods and functions that enable these kinds of values to be saved correctly.
For one of these values to be saved correctly, the instance or class variable that they are stored on must
have a property that designates them as special. The property name may be either Instances, Ugly, or
Horrible. If the property name is Instances, it designates some value of the instance or class variable
that it is stored on as an instance or a list structure containing instances. P: the property is Ugly or
Horrible, it designates that some value of the instance or class variable that it is stored on is some
other structure, such as a bitmap, uses-datatype, array, or hash array, needs to be treated specially. If
a value is marked as Horrible, it may contain a circular structure; if it is marked Ugly, it may not.
Marking some value as Ugly results in a large speed and internal-storage advantage over marking it
as Horrible.

Each of these properties, Instances, Ugly, or Horrible, may have values that designate which values of
their instance or class variable are to be treated specially. If the value is Value, then the instance or
clue variable value is treated specially. If the value is All or Any, the instance or class variable value,
as well as any properties of the instance or class variable, are treated specially. If the value is some
other atom, it is treated as a property name, and that property of the instance or class variable is
treated specially. The value may also be a list containing any of the above values.

When a file containing Loops classes is saved, each class is sent the message FileOut to save itself to
file. Chips specializes this method, in the metaclass UglyMeta, so that it checks each instance and
class variable to determine if any of its values are to be treated specially. When a Chips class (any
class which has ChipMeta as its metaclass) is sent the message FileOut, the message is intercepted by
UglyMeta (a super class of ChipMeta). This method calls the function AddlnstancesToFilevar, which
saves all values designated by the Instances property to the file variable of the file being saved. It then
encodes all values marked by the Ugly or Horrible property by printing their values to a core file, using
HPRINT, and reading them back in, using BIN, and constructing a string representation, which is then
saved to the file.

When these files are loaded, the values marked as ugly or Horrible must be converted back to their
original representation. This is done by printing the values to a core file, using BOUT, and read from
the core file using HREAD.

14 21

www.manaraa.com

Chips Technical Report

4. Chips Interactive Environment
Chips provides a powerful environment for interactively creating and modifying direct manipulatir
interfaces. There are two paths for developing applications that use Chips. They can be used
interchangeably as convenience suggests. The first is through a Chips Browser This browser
provides: access to the class definitions, editors for specific properties of classes, and access to the
taxonomic hierarchy of the classes of an application. The second is through the application's own
interface. There are a number of features that support direct access through the interface to
underlying data structures, functionality, and specific properties of an interface. This section
summarizes the features of the Chips interactive environment.

4.1 Chips Icon

Both paths of interaction are accessible through the Chips Icon. When Chips is loaded, the Chips Icon
appears on the screen (see figure 1).

Left button: "Drag the icon"

Middle button: "Chips options"

Right button: "Window options"

Figure 1. The Chips icon and its mouse button options

Selecting the Chips Icon with the middle button presents a menu of Chips options, Create a substrate,
Browse a file, Browse Saving Options, and Edit Chips Icon.

Selecting Create a substrate creates a new instance of the class Substrate and sends it the message
Initialize which prompts for a region of the screen to display the new substrate.

Selecting Browse a file presents a menu of all the files on the system variable FILELST. Selecting a file
name from this menu creates an instance of the class ChipsBrowser that shows 11 of the classes
defined by that file. This browser may then be accessed interactively. This option has a submenu
associated with it with one selection, Browse object dependencies. Selecting this option presents a
menu of all files on the system variable FILELST. If a file name is selected, a browser of that file is
created, displaying the file name and all objects that are stored on that file's variable (see figure 2)

Chips Object Dependencies Browser
Joe

ICHIPSTOVS Gretchen
DemoDomainObject

Figure 2. A browser showing the objects pointed to by the file CHIPSTOYS

In this browser, nodes representh.g file name are display in bold font with a two pixel border around
the name, class names are displayed in bold font without a border, and instances are displayed in a
regular font. Each le has several options available by selecting the node with the middle mouse
button pressed. These options are shown in figure 3.

13

www.manaraa.com

Chips Technical Report

Chips Object D

CHIPSTOYS
J

Descrioe
Edit
Inspect
Extend
Un Extend

ies Browser

Gre c en
DemoDomainObject

Figure 3. Options available from the object dependencies browser

Selecting Describe from this menu prints information about the selected node including what kind of
object it is and what files it is stored on.

Selecting Edit from this menu invokes the Interlisp-D editor DEdit on the definition of the object
associated with the selected node.

Selecting Inspect from this menu creates an Interlisp-D inspector, inspecting the object associated
with the selected node.

Selecting Extend from his menu extends the browser to include objects pointed to by the selected node.

Selecting UnExtend from this menu removes all objects pointed to by the selected node from the
browser.

Selecting Browse Saving Options from the Chips Icon middle button menu presents a browser of saving
options that controls what actions are to occur when certain events occur during the use of Chips. This
browser is shown in Figure 4.

Chips Saving Options ---

When Created
When Named

When Added to Substrate
When Edit .d

?Prompt for Name
IGenerate Name
Prompt for File
File in Default File
File With Substrate
Mark as Changed
Oo Nothin

Figure 4. The Chips Saving Options Browser

The grid in the browser allows the user to control what actions are to occur at specified events during
the use of Chips. The events are listed, horizontally, at the top of the browser while the actions to take
in response to these events are displayed vertically, to the right of the grid. Responses that are
mutually exclusive are grouped with a vertical bar connecting the mutually exclusive responses.

23
10

www.manaraa.com

Chips Tewhnical Report

The four events that are controlled with this browser are: When Created, When Named, When Added
to Substrate, and When Edited

When Created whenever an instance of the class DomainObject, DisplayObject, Substrate or any of
their subclasses is created and initialized, the selected responses occur

When Named whenever a instance is named while using Chips, the selected responses occur

When Added to Substrate whenever a display object instance is added to a substrate, the selected
responses occur.

When Edited whenever an instance is edited through a Chips menu, the selected responses occur

The responses that are controlled from this browser are Prompt for Name, Generate Name, Prompt for
File, File in Default File, File With Substrate, Mark as Changed, and Do Nothing.

Prompt for Name asks the user to enter a name for an object.

Generate Name generates a name for an object using GENSYM and the class name of the object.

Prompt for File asks the user to select a file in which to store the object.

File in Default File stores the object in the default file; if the object is a class, it is stored in the file
CHIPSCLASSES, L'it is an instance, it is stored in the file CHIPSINSTANCES.

File With Substrate stores the object, usually a display object instance, in the same file as the
substrate it is displayed in.

Mark as Changed marks an object as changed so that it will be recognized by the file package

Do Nothing does nothing in response to the selected event.

Selecting the option Edit Chips Icon invokes the Irterlisp-D editor, DEd it on the class ChipsIcon

4.2 The Chips Browser

Chips provides a graphical browser for a class hierarchy of Chips classes that supports the creation
and management of Chips files. It is called the Chips Browser (see figure 5).

Chips Browser (CHIPSDOMAIN(M)

,IntornalConnirctor
--Cockruch

Oarnainatoorct
----DemoOorrksinObject

EldierOorn001

klechanismthincerOcessObj

Figure 5. A Chips Browser

This browser provides a graphical display of the portion of the class inheritance lattice that is defined
by a particular file. Selecting the name of a class with the mouse produces a menu for editing different
aspects of the selected class.

This browser is a specialization of the Loops class FileBrowser. The Loops browser provides options
that allow the interactive creation, modification, and examination of classes (see figure 6).

4 17

www.manaraa.com

Chips Technical Report

CHIPS file browser.
Chips loco

image

Instancefile

BoxNode
Methods (EditMethod)
Add (AddMethod)
Delete (DeleteMethod)
Move (MoveMethodTo)
Copy (CopyMethodTo)
Rename RenameMethod
-11:11.11471INETTIENIIMME

TEditChip

ImagePlaneChip

FooChip

Figure 6. Browser options provided by the Loops file browser

In addition to these, we have added options specific to chips classes. These options are shown in figures7 and 8.

BoxNode
Methods (EditMethod)
.1deAJW"lethod)

Specialize
AddNewMethod
SpecializeMethod
Add Display Object
Add Connection Capability
Add Mechanism Capability
DefPSM
AddSuper
AddNewlV

AddNewCV
Delete (DeleteMethod) 'New

Move (MoveMethodTo)

1113

Copy (CopyMethodTo))II
Rename (RenameMethod)01'w

04 Edit (EditClass)

Figure 7. Options available from the Add (AddMethod) submenu

BoxNode
Methods (EditMethod)
Add (AddMethod)
Delete (DeleteMethod)
Move (MoveMethodTo)
Copy (CopyMethodTo)
Rename (RenameMethod)

Edit
Edit!
Inspect
Edit Display Object
Edit Response To Selection
Edit Mechanism

Figure 8. Options available from the Edit (EditClass) submenu

There are several options that are specific to Chips, all to be used with subclasses of the class
DomainObject, including: Add Display Object, Add Connection Capability, Add Mechanism
Capability, Edit Display Object, Edit Response To Selection, and Edit Mechanism.

Selecting Add Display Object creates an inspector that a'aiows the user to define the new display object
that will be added to the selected domain object class. This browser is shown in figure 9.

18

DemoDomainObject DisplayObject Specifier
UMM NIL
Class OisplayObject
figure PictureSpecification
mask PictureSpecification
map PictureSpecification

Figure 9. The Display Object Specifier

www.manaraa.com

Chips Technical Report

Using this inspector, the user may specify the class of display object that is to be added to the selected
domain object class along with the tag that will be used to refer to that display object and the classes of
picture srecification that are to be used for the display object's figure, mask, and map When the
display object is specified, it may be installed in the domain object class by selecting the inspector's
title bar with the middle button pressed and selecting Install from the menu that appears.

Selecting the option Add Connection Ability establishes connection capability for the selected domain
object class. When this option is selected, Chips attempts to add the class ConnectionMixin to the
supers list of the class. This is done by sending the class the message InstallSuper, which is defined by
the metaclass AddSuperMeta. This method expects that either the class or one of its super classes has
a CV that has the same name as the super class to be added. This CV should have two properties:
fileName, which stores the file that the super class is stored on, and selectors, which stores a list of the
messages that the super class implements. InstallSuper asks to make sure that the user wants to add
the super to the selected class. If so, it checks to see if the file that implements the super is loaded, by
sending the class the message FileLoaded?. If the file isn't loaded, it will load it. It then installs the
super in the super list of the class, copying any IVs with a property copyDown that has a non-NIL
value.

In addition to explicitly requesting that a capability be added, if any message is sent to a domain object
instance that it does not understand, Chips checks to see if he message is one that would be
understood if a certain super were added to the supers list of the domain object This is accomplished
with the AddSuperMeta class and the method DomainObject.MessageNotUnderstood. If a message is
sent to a domain object that it does not understand, the message MessageNotUnderstood is sent by
Loops to the object, which, in turn is intercepted by DomainObject .MessageNotUnderstood.
MessageNotUnderstood sends the message NewSuperSelector? to the class of the domain object. This
message is implemented by the class AddSuperMeta and looks at the domain object's class for a CV
that has a selector on its selectors property that matches the message that was sent to the domain
object. If such a CV exists, the message InstallSuper is sent to the Domain object's class.

Selecting the option Add Mechanism Ability establishes mechanism capability for a class of domain
objects. When this option is selected, Chips attempts to add the class MechanismMixin to the supers
list of the domain object's class. If the class MechanilmMixin is not loaded, Chips will ask the user
whether to load the file MECHANISMS which defines the classes, instances, methods, etc., that are
required to establish a mechanism. MechanismMixin is then added to the supers list. This is done
folio. 'ing the same procedure described above for ConnectionMixin.

Selecting the option Edit Display Object allows the user to define how instances of a domain object class
will display themselves in a substrate. When this option is selected, it presents a menu of all dispiay
objects defined for the selected domain object class. If a display object is selected the display object is
t...dn edited, using the Display Editor. If the selected display object has an instance of the class
DisplayEditor stored in its editor IV, that display editor is opened. If not, a new instance of the class
DisplayEditor is created, stored in the editor IV of the display object, and opened. In this case,
selecting Exit while using the Display Editor updates the display object associated with the domain
object class, so instances created from this class will subsequently reflect the changes made during
editing. The Display Editor is discussed in detail at the end of this section.

Selecting the option Edit Response To Selection allows the user to define the response to selecting a
particular display object with the mouse cursor while that display object is displayed in a substrate.
When this option is selected, a menu of all display objects defined for the selected domain object is

26 19

www.manaraa.com

Chips Technical Report

presented. If one is selected, the Interlisp -L) editor DEdit is invoked on the form that describes that
display object's response w selection.

Selecting the option Edit Mechanism allows the user to edit the mechanism associated with the
selected class of domain object. Mechanisms provide a way to describe the behavior of a class of
domain objects in terms o, instances of other classes adomain objects, as described above.
When this option is se' hd, the user is asked to sweep out a region of the screen' ti display
substrate, called the Motnanisri Editor. The Mechanism Editor will contain the class's mechanism, if
one is defined.

An option has been added to the title bar menu of the Loops FileBrowser: Add New Class. Selecting
Add New Class and sliding to the right (see Figure 10) presents a menu of Chips classes that will
frequently need to be specialized, providing = straightforward way of creating new specializations and,
associating them with a particular file. When a class is selected, the user is asked to type in a name for
the aew specialization, which is then created, having the selected Chips class in its supers list. When a
Chips class is specialized, all IVs of the specialized class that have a property copyDown set to a
nonNIL value are copied along with their values to the new class. This is accomplished using the
metaclass CopyOnSpecialize with the method Special:,,e. This method is a specialization of
Class.Specialize.

Recompute
AddRoot
Save Value
RemoveFromeadList
Change display mode
Add file to browser
Select File
Edit File Coms
Edit Functions
Edit instances
Edit Variable
Hardcopy file
Save file

Now I.t43

FooChip

Specialize PictureSpecificabon
Specialize DisplayObject
Specialize Substrate
Specialize EventStream
Specialize Connection
Specialize Spy

J
Figure 10. Creating a specialization of a Chip:, class from the file browser.

4.3 Modifying an application through the development interface
This section will discuss a) how a substrate manages the display of multiple, overlapping display
objects and b) the editing options available selecting substrates and display objects.

4.3.1 Displaying overlapping display objects
To support tile display of multiple, arbitrarily shaped display objects in a substrate, Chips creates the
illusion that display objects overlap one another, as though the screen had depth and somr display
objects were closer to the viewer than others. This overlapping is essentially 2 1/2 dimensional. That

there is no sense of absolute distance between the display object and the viewer, only that certain
display objects are closer to the viewer than those that they overlap. Chips provides a sense of relative
depth, not absolute depth.

Each substrate instance stores a list of the display object instances it contains in the IV contents.
They are stored in order, ao that the topmost display object is on the front of the list. Each display

20
27

www.manaraa.com

Chips Technical Report

object stores an ordered list of tiLe display objects that it overlaps in an IV, lccludedByMe, and an
ordered list of the display objects that overlap it, in an IV, called occludesMe. When a substrate
instance redisplays its window, it clears the window, and traverses its contents in reverse order,
sending each display object the message Draw. As mentioned in Chapter 3, display objects can be
irregularly shaped and may have holes in them.

When a display object is to move, it is sent the message PrepareToMove which, in turn, sends the
message Draw Under, drawing all display objects that overlap the display object to a scratch bitmap. It
t'.en removes itself from all occludesMe and occludedByMe IVs of the overlapping display objects, and
finally removes everything from its own occludesMe and occludedPyMe IVs.

When a display object is placed in a substrate, it checks to see which display objects it overlaps and
updates itself and them accordingly, with the message InformThoselLandedOn. It also puts itself on
the front of the substrate's contents IV, sending the substrate instance the message Add InFront.

Occlusion is maintained with respect to selection of a display object with the mouse cursor. When a
mouse button is pressed while the mouse cursor is in a substrate's window, the window's
BUTTONEVENTFN is called. The default BUTTONEVENTFN in Chips is ChipsEventFn. This function
sends the window's substrate instance the message GetObjectAt, which traverses the contents IV of
the substrate, in order, sending each display object the message OnYou? with the coordinates of the
mouse cursor selection. If a display object was under the cursor, it is returned, otherwise the substrate
instance itself is returned. The instance that is returned is sent the message RespondToSelection.
The RespondToSelection method sends the selected instance the message GetPartAt with the
coordinates of selection. The method GetPartAt traverses the object's map and returns a tag,
indicating what the cursor was over wtien the mouse button was pressed. The RespondToSelection
message ,aen looks at the eventResponses IV of the object to determine what to do in response to the
selection. The eventResponses IV stores a list of triples of the form:

(part howSelected whatToDo)

part is the name of a part of the instance, howSelected indicates the type of selection and is usually a
type of button, such as LEFT or MIDDLE, whatToDo is either an atom in which case it is treated as a
message name and is sent to the selected instance, or it is a form that is evaluated.

In addition to being arbitrarily shaped, display objects do not have to he entirely solid. It is possible to
define holes in the middle of a display object. This is also supported both visually and with respect to
selection with the mouse cursor.

Figure 11 shows a substrate with three display objects: the display object of the class ChocolateChip
which looks like a chocolate chip cookie, the display object of the class FooChip which looks sort of like
the man in the moon, and the display object of WasherChip which has a hole in the middle.

48, 40
0

21

www.manaraa.com

Chips Technical Report

Figure 11. A substrate with three overlapping display objects

In this figure, the Washer Chip overlaps the Chocolate Chip which in turn overlaps the FooChip. The
Chocolate Chip is partially occluded by the WasherChip but can be seen through the hole in the
Washer Chip. Selection of these display objects with the mouse cursor exactly corresponds to their
visual representation in the substrate. Selecting the part of the FooChip that is not occluded selects
this display object Selecting any par. of the WasherChip's display object selects it. Selecting any part
of the ChocolateChip that can be seen, including the part that is seen through the hole in the
WasherChip, selects it

Substrates keep a list of the display object instances they contain. This list is ordered by depth; the
front-most display object instance is first To redisplay the substrate window, the list is traversed in
reverse order so that the front most display object is displayed last. Thus, overlapping display object
instances give the illusion of depthas display object instances closer to the front occlude display objects
behind them. To determine which display object 'instance the mouse cursor is pointing to, the list is
searched in order. Thus, if display object instancesoverlap one another, the one closest to the front is
found first.

4.3.2 Interactive editing of display object instances
By default, Chips provides a number of options available through a display object on the screen. To
perform some operation on a display object or its associated domain object, the user merely selects that
display object with the mouse cursor. This section will discuss the default options that are available
fol. interacting with display objects and domain objects through their pictures on the screen.
The default response to left button mouse selection of a display object is to send that display object the
message Animate, which picks it up, attaches it to the mouse cursor and allows it to be dragged around
the screen. When a display object is picked up, it first comes to the top of whatever display objects may
have been overlapping it. It then follows the mouse cursor around the screen until another mouse
button is pressed. When a display object is put dowr, it will, by default, overlap any display objects
that are occupying the region it is placed in. Display objects may be dragged from one place in a
substrate to another or placed in any open substrate on the screen

Dragging maintains the illusion that the user is actually manipulating the objects represented by a
particular display object The dragging animation is very smooth with no flicker and does not
obliterate the screen.

The method that implements dragging is called Animate. Animate provides hooks for redefining what
happens when dragging a display object. To use these hooks, the user needs to specialize one or r.ore
methods for a new class of display object.

Chips provides several options for editing the properties and behavior of a display object and its
associated domain object. These are available by selecting a display object with the middle button and

29
22

www.manaraa.com

Chips Technical Report

choosing the editing option from a menu. When the middle button is pressed, the display object is sent
the message OfferEditOptions, which presents the menu of options. These options are acquired by
appending the results of sending the display object and its associated domain object the message
GetEditOptions. These options are roughly grouped into four categories: operations involving the
display object's properties and behavior, operations involving the associated domain object's properties
and behavior, operations involving the connections of a domain object, and operations involving the
domain object's mechanism. Figure 12 shows the menu of editing options available for the display
object of an instance of the class MechanismnancerDomObj.

Delete from Substrate
Move to a specific position
Drag Display IDbject

-.inspect Display Object
Edit Display Representation
Edit Response to Selection
switch Tag
Name Di3play Object
Send Message to Display Object'
Make Method Menu for Di3play Object

Name Domain Object
Switch Depiction
Inspect Domain Object
Send message to Domain Object

Connect
Destroy All Connection 3
Edit Connections
Edit a Connection

,Delete a Connection

A Substrate Wind

4 Edit Mechanism

, I I I

Figure 12. The editing options menu for an instance of MechanismDancerDomObj

Editing options involving display objects

There are ten options that support editing the properties and behavior of display objects: Delete from
Substrate, Move to a specific position, Drag Display Object, Inspect Display Object, Edit Display
Representation, Edit Response to Selection, Switch Tag, Name Display Object, Send Message to
Display Object, and Make Method Menu for Display Object.

Selecting the option Delete from Substrate deletes a display objet from the substrate in which it is
displayed, by sending the display object the mess? DeleteFromSubstrate Deleting a display object
erases it from the screen, displaying any display objects that it overlapped, maintaining, in turn, their
overlapping with other display objects in the substrate. It also removes it from the displayObjects IV
of its associated domain object instance.

Selecting the option Move to a specific position allows the user to specify coordinates within the same
window where the display object is to be moved. The user is prompted to enter the x and y coordinates
for the move, using the Interlisp-D function RN U MB E R, and the display object then removes itself from
its current position and relocates in the position indicated by the entered coordinates, sending itself
the message Move.

30 23

www.manaraa.com

Chips Technical Report

Selecting the option Drag Display Object sends the message Animate to the display object, allowing it
to be picked up and dragged around the screen. Dragging is described in detail above. Selecting this
option is the same as selecting the display object with the left button.

Selecting the option Inspect Display Object invokes the lnterlisp-D inspector on the selected display
object instance. The' inspector is window-based and allows the user to examine and modify the
properties of a particular instance of a display object class. Figure 13 shows an inspector for the
display object of an instance of the class SquareChi p.

All ties at DisplayObject-$SquareDisplayabidctCapy002
fileNae NIL
fileComs NIL
fullFile NIL
occludedbylle (4MoveAwayOispOb)eopy0815)
occludeslle NIL
displayStrea {MIN00104377,6234
eventStrea NIL
figure S$SquareOisplayObjectCopy8823Figure
mask SISquareOisp1ayObjectCopy_023Mask
SOP (M$SquareOisp1ayObjectCopy0823Map882
position (23 . 38)
host S&(Substrate (255 . 1.8248))
Object SISquareChip8022
editor NIL
responsesToSelection ((map LEFT Animate) (map MIOOLE Offe
physicalConnectors NIL

Figure 13. The inspector

Selecting the option Edit Display Representation invokes the Display Editor on the selected display
object. The Display Editor will be discussed in detail below.

Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the display object's response to selection with the mouse cursor. The form is a list of triples,
each consisting of the name of a map element of the display object, a type of mouse selection (usually
either LEFT or MIDDLE), and the action to take in response to selecting the particular map element
with the particular type of mouse selection. If the action is an atom, it is treated as a message name
that is sent in reponse to the particular combination; otherwise it is treated as a form to be evaluated.
The user may alter elements, add new elements, or delete existing elements from the list, altering the
display object's response to selection with the mouse cursor. Figure 14 below shows the response
description form for the display object of a MoveAwayChip.

DEtht at expression.

((map LEFT Animate)
(map NICOLE OfferEditOptions)
(center MIOOLE (self Animate (S WinEventStream)

($ WinOispStrea))))

Figure 14. The response description for a display object.

Selecting the option Switch Tag allows the user to switch the set of picture specification instances that
are used to display the selected display object. When this option is selected, a menu of all tags
associated with the selected display object is presented. If a tag is selected from this menu, the new

24 3 1

www.manaraa.com

Chips Technical Report

picture specification instances are swapped in, becoming the new values of the figure, mask, and map
IVs of that display object.

Selecting the option Name Display Object allows the user to give some easily remembered name to a
particular display object instance.

Selecting the option Send Message to Display Object allows the user to send the selected display object
a message. When this option is selected, the user is prompted to enter the name of a message in the
substrate's prompt window. This message is then sent to the display object, executing the associated
method.

Selecting the option Make Method Menu creates a menu of the methods associated with the selected
display object's class. This menu may then be used to edit particular methods with the lnterlisp -D
editor.

Editing options involving domain objects

There are four options that support editing the properties and behavior of a display object's associated
domain object: Name Domain Object, Switch Depiction, Inspect Domain Object, and Send Message to
Domain Object.

Selecting the option Name Domain Object allows the user to give some easily remembered name to a
particular domain object instance.

Selecting the option Switch Depiction allows the user to switch display objects for a particular domain
object. When this option is selected, a menu of the display objects associated with the selected domain
object's class is presented, by sending the domain object the message AskDepiction. Selecting on of
these sends the display object the message ReplaceDepiction, deleting the current display object and
substituting the selected display object in the substrate at the same position. Figure 15, shows a
sequence of three substrates that demonstrat-ss changing the display object of an instance of
DemoDomainObject.

A Sotistr ate Window

Figure 15. Changing the display object of DemoDomainObject

Selecting the option Inspect Domain Object invokes the Interlisp-D inspector on the domain object
instance associated with the selected display object. The inspector is window-based and allows the
user to examine and modify the properties of a particular instance of a domain object class.

Selecting the option Send Message to Domain Object allows the user to send a message to the domain
object instance associated with the selected display object. When this option is selected, the user is
prompted to enter the name of a message in the substrate's prompt window. This message is then sent
to the domain object, executing the a sociated method.

Editing options involving Connections

If the domain object associated with the selected display object has connection capability, five options
are available from the editing opt' Ins menu that support creating and maintaining connections

32 25

www.manaraa.com

Chips Technical Report

between domain objects: Connect, Destroy All Connections, Edit Connections, Edit a Connection, and
Delete a Connection.

Selecting the option Connect allows the user to interactively add a new connection for the domain
object associated with the selected display object. When this isselected, the user is prompted to enter
the name of the new connection and to select the participant in the connection. The connection is then
established.

Selecting the option Destroy All Connections deletes all connections currently established for the
domain object associated with the selected display object

Selecting the option Edit Connections allows the user to edit the connections of the domain object
associated with the selected display object. When this is selected, the Interlisp-D inspector is invoked
on the instances of Connection currently defined for the domain object.

Selecting the option Edit a Connection allows the user to specify a particular instance of Connection to
be edited. When this option is selected, a menu is presented of all participants involved in connections
with the selected domain object If one is selected, another menu of the names of all connections that
the selected domain object and the selected participant are involved in. If both participant and name
are specified, the Interlisp-D inspector is invoked on the instance of Connection indicated.

Selecting the option Delete a Connection allows the user to interactively specify a particular
connection to be deleted. Specifying the connection is done as described above for Edit a Connection.
Once a connection has been specified, this connection is deleted from the domai,. object associated with
the selected display object

Editing options involving Mechanisms

lithe domain object associated with the selected display object has mechanism capability, an option is
available from the editing options menu that supports creating and maintaining the domain object's
mechanism: Edit Mechanism. Selecting the option Edit Mechanism enables the user to edit the
mechanism that determines the selected domain object's behavior.

4.3.3 Options available by selecting a substrate
Chips provides a number of options that are available by selecting a substrate window. These options
allow the user to interactively examine and modify important properties of substrates.

New instances of domain object classes can be created and their display objects displayed in a
r bstrate by pressing a mouse button while the mouse cursor is in the background of a substrate
window. When the background is selected the message OfferNewDomainObject is sent to the
substrate instance. This method presents a menu, by sending the substrate instance the message
AskDomainObjectClass, which contains the names of all the classes of domain object currently defined
in the eLvironment. If one is selected, an instance of that class is created and sent the message
Initialize. If there is more than one display object for the selected domain object, a menu of the display
objects is presented. If there is only one display object for the selected domain object, that one is used.
The display object is then displayed in the substrate's window. When new classes of domain object are
defined, they are automatically added to the substrate's background menu. Figure 16 shows the
response to SF lecting in the background of a substrate.

26 33

www.manaraa.com

Chips Technical Report

Selec.

Dicjita

And Gate
ChocolateChip
Directed Wire,: hip
Doughnut Chip
FooChip
FormChip
ImagePlaneChip
LabelChip
Light Bulb

otG ate
OrG ate
Pin Chip
Power Source
StraightWireChip
TEditChip
Vanilla Chip
Wire Chi

Figure 16. The background menu ofa substrate

Pressing the left mause button while the mouse cursor is in the title bar of a window, sends the
associated substrate instance the mes -age OfferEditOptions, presenting a menu of editing options that
allow the user to examine and modify important properties of the selected substrate. These options are
shown in figure 17.

A Substrate in

Load
Collect new instances
Browse Dependencies
Save contents
Inspect
Edit Response to Selection
Clear Substrate
Name
Send

e

Figure 17. Title bar options ofa substrate

Selecting the option Load allows the user to load a group of display objects from a file into the selected
substrate. When this option is selected, the substrate is sent the message Load, which prompts the
user to enter a file name. If a file name is enttic..., be file is loaded into the environment and display
object instances stored on the file are displayed in the substrate's window.

When an instance is loaded that has a value that is marked as Ugly or Horrible, such as a bitmap, it is
necessary to convert this from the form that was used to save it. When an instance is loaded from a

34 27

www.manaraa.com

Chips Technical Report

file, the ftmction DEFINST is called to create the instance. DEFINST sends the message Old Instance to
the instance after it is defined. Classes whose irstences may have such values stored in some IV or IV
property have a super called UglyMizin. UglyMixin specializes the method Oldlnstance to check the
new instance for values marked as Horrible or Ugly.

To designate that a particular value is Horrible or Ugly, the IV containing the value should have a
property Horrible or Ugly, which may have as its value one of the following: Value, which designates
the IV value as the ugly or horrible structure, All or Any, which designates that the IV value and all of
the IV's properties have a structure that is horrible or ugly, a property name, which designates a
specific property as horrible or ugly, or a list containing any of the above values. If a value is
designated as Ugly, it is assumed to not have circular structures; a value that is marked as Horn ble
may have circular structures. Marking something Ugly resits in a large speed and internal-storage
advantage over marking it as Horrible. When a horrible or ugly value is encountered, the method
UglyMixin.01dInstance decodes the value by using BOUT to write the value to a core file and then
reading it from the core file using H REA D.

After each instance is read, its host IV is set to the substrate it is loaded into, its displayStream IV is
set to the substrate's window, and each instance is added to the contents IV of the substrate. The
window is then redisplayed.

Selecting the option Collect new instances allows the user to associate the substrate and all display
objects it contains with a particular file, placing all instances on the files file variable. When this
option is selected, the user is asked to specify a file to save the substrate and its display objects on.
These instances are then added to the file variable of the specified file.

Selecting the option Browse Dependencies creates a browser window with one node representing the
substrate. This node can then be expanded further to examine the objects pointed to by the substrate.
This can be useful to discover exactly what will be saved to a file when the substrate is saved.
Selecting the option Save contents allows the user to save the display objects contained in the selected
substrate and their associated domain objects to a file. When this option is chosen, the user is
prompted to enter a file name to save to. If one is specified, the contents are saved to a file. They may
be loaded into another substrate later using the Load option. Saving display object instances means
that picture specification instances must be saved as well. Since picture specification instances
typically have bitmaps as values of their instance variables, these values will need to be encoded
before saving them to a file. This is accomplished by the method UglyNlixin.FileOut. FileOut is a
specialization of Object.FileOut which encodes values that are marked as Ugly or Horrible. It does this
by writing the values to a core file with HPRINT and reading them in using BIN and converting them to
a string before it prints them to a file. Classes whose instances may store these values, such as
PictureSpecification, have UglyMixin as a super class.

The Save contents and substrate option is available by selecting the Save contents option, sliding to
the right, and selecting it from the submenu that appears. The user will be prompted to enter a file
name. If one is specified, the substrate and all of itscontents will be saved to the file. When this
option is selected, a description of the substrate's window is also saved to the file so that the window
can be recreate,' with all its properties intact.

Selecting the option Inspect invokes the Intei lisp -D inspector on the selected substrate's instance.
Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the substrate's response to selection with the mouse cursor. The form is identical to the form

www.manaraa.com

Chips Technical Report

described above for display objects. Figure 18 below shows a sample response description form for a
substrate.

()Edit of expression:
((TitleOrBorder LEFT OfferEditOptions,
(TitleOrBorder MIDDLE AskWEditCommand:)
(Background LEFT OfferNewChip)
(Background MIDDLE OfferNeuChip))

Figure 18. The response description for a substrate.

Selecting the option Clear Substrate deletes all the display objects from a substrate and updates the
display.

Selecting the option Name allows the user to give some easily remembered name to a particular
substrate instance.

Selecting the option Send allows the user to send a message to the selected substrate. When this
option is selected the user is prompted to enter a message name. If one is specified, that message is
sent to the substrate and the corresponding method executed.

There are two additional options available by selecting the window's title bar with the middle mouse
button pressed: Edit Window and Edit Button Event Function.

Selecting Edit Window invokes the Window Description Editor, a modified version of the Interlisp-D
Inspector, allowing On properties of the substrate's window to be interactively modified. This
inspector allows window properties to be interactively changed and the results seen immediately The
Window Des(ption Editor is shown in Figure 19.

Window Descript' n Etitcr
TITLE

DOWN
VINOONTITLE:M40E
REGION
HEIGHT
WIDTH
OPEN"
IION
ICONVINOON
ICONFN
BUTTONE,,ENTFN
RIGHTBOTONFN
VINGOVENTWN
CURSORINFN
CURSOROUTFN
CURSORNOVEOFN
03P
1CROLLFN
:CROLLE,TENTU:E
((TENT
NO:CROLL5FR:
NAROCOPYFN
REPAINTFN
PAGEFULLFN
N OVEFN

AFTERNOEFN
CALCULATEREG ION
INITCORNERSFN
OPENFN
TOrOPFN
RE5N4PEFN
003MAPE N
NEVREDIONFN
3MRINKFN
EXPANOFN
CLOSEFN
o sermArA

'A ;Gestr4C4
4

NIL
.143 Z53 .96 1771
155
218

NIL
I4INOCWIR3': 151554
NIL
Chlo;E.en.*m
GOVINOONCON
DUE TT< PROCE:S
NIL
NIL
NIL
:TRE41043"3 14'089

MIL
NIL
NIL
NIL
NIL
0.1,4Rep*Inti%
NIL
mov**TTUNEO0INO0w:1

NIL
NIL
NIL
,IPENATTACm*OwIN00G:i
.TOP4ITACNEPINOCV4,
CII,Otoelm,FN
RE:NAPEALLFINOu4.
NIL
:,NITINKATTALMEOVINCO.o,.

.F PANOATT4CMEOVINOOIT:
:LOSEATT4CNEOvIN0003
LOGOIns2m. e *,, it,

w1.144.,

MIMS'

Figure 19. The Window Description Editor

36 29

www.manaraa.com

Chips Technical Report

Selecting Edit Button Event Function invokes the Interlisp-D editor DEdit on the function that
determines the window's response to selection with the mouse cursor. The default button event
function, ChipsEventFn, merely sends the message RespondToSelecti on to the object that was selected
with the mouse cursor. This enables the user to control responses to selection through the menu
option, Edit Response to Selection, provided for display objects and substrAtes. Editing the button
event function directly may disable this ability but is provided to allow for more flexible determination
of a window's response to selection.

'4.3.4 The Display Editor

The Display Editor allows the user to interactively design a display object. This is done by using a
modified version of the Interlisp-D graphical editor, Sketch, to draw what the display object should
look like when displayed on the screen. Usin.,. the Display Editor, the user can define both what the
display object will look like and its mouse-sensitive areas. It also provides a way to define alternate
sets of picture specification instances for the display object and to establish a mouse-sensitive
subregion as a physical connector. The Display Editor is shown in figure 20.

Control Panel
menu

Describe
ictt trey

'figure
mask
map

..,arrilmfm.

710.787111t
too

Image window

Delete
Move
Copy
Chan e
MEM

*C.

O
Group
UnGroup
Undo
Defaults 0
Grid
Move view
HardCopy
Put
Get
Exit

Main
menu

Figure 20. The Display Editor

Instances of the class DisplayEdito" are cached on the editor IV of the display, object that is edited.

Each display object has at least three pictures associated with it: the figure, mask, and map. The
figure picture describes what the display object will look like on the screen. The mask picture
describes which parts of the display object are opaqt.l. The map picture describes what part of a
display object may be selected with the mouse ctirsor.

The main menu of the Display Editor provides graphical primitives such as circles, polygons, curves,
and closed curves plus simple operations for manipulating these graphical objects. The main menu
can be seen to the right of the main window in figure 20.

The Display Editor adds three options to the main Sketch menu: Move to picture and Copy to picture,
both available in the submenu of their corresponding main menu selections, and Exit. When one of
Move to picture r- Copy to picture is selected, a menu of all the pictures currently defined for the

30 3 7

www.manaraa.com

Chips Technical Report

display object is presented. If one is selected, the user is then asked to select the elements to copy or
move. If one or more are selected, they are then movedor copied to the selected picture.

The exiting options are Exit and Quit. Exit saves the sketches to the editRepresentation IV of the
picture specifications of the display object being edited, creates a bitmap from the sketches, and
updates the offset of the picture specification to rep,...sent the offset of the region occupied by the
picture's sketch from the largest region occupied by the sketches of all pictures. Quit stops the editing,
leaving the picture specifications as they were before editing

The Display Editor also provides a control panel for moving between the various pictures of a display
object, for creating new mouse-sensitive subregions, for switching between various sets of pictures
defined for the display object, and for adding new sets of pictures to the display object. This is shown in
figure 20 to the left of the main window.

The control panel menu is split into three parts. The top part is the option Describe which prints
information in the User Exec window describing the display object and where it came from.

The next part of the control panel menu is the Pictures Menu. This allows the user to switch between
pictures by selecting a name with the left button. Selecting a picture from the control panel with the
middle mouse button pressed presents several other options. Each picture has two options: Display
picture and Edit picture. Selecting Display picture displays the selected picture in the background of
the picture being edited, in gray. This is often useful for lining up parts of two separate planes.
Selecting Edit picture makes the selected picture the picture being edited.

The user can define new pictures, representing mouse-sensitive subregions, for a display object. The
map and subregions are stored in the tree form used by the map of a display object. Their position in
the tree is represented in the control panel by indentation, hose things indented further to the right
indicate that they are at a lower level of the tree. To add a new mouse-sensitive subregion, the user
selects the map or an existing subregion from the control panel with the middle mouse button pressed.
This presents a menu with several options, including Subdivide picture. If this option is selected, the
user is prompted to enter a name for the new subregion, and a new subregion picture is created, nested
within the selected region.

A subregion picture can be deleted by selecting it with the middle mouse button pressed and selecting
Delete picture from the menu that appears.

A subregion plane can be established as a physical connector by selecting Label Position from the
middle button menu. When this option is selected, the user is prompted to select a position in the
Sketch that will serve as physical connector position for this picture. This will add the picture's name
to the physicalConnectors IV of the display object being edited when the Display Editor is exited.

The next part of the control pane! menu is the Tags Menu. This menu allows the user to switch
between editing different sets of pictures that are defined for the display object. To select a particular
set of pictures for editing, its tag is selected from the Tags Menu with the left button.

There are three options available for tags by selecting a particular tag with the middle mouse button
pressed Add a tag, Delete, and Copy Tag. Selecting Add a tag prompts the user to enter a name for a
new tag and then creates a new set of pictures for the display object. Selecting Delete deletes the
selected tag from the display object's definition. Copy Tag allows the user to copy an entire set of
pictures to another set all at once. This can be useful if two sets of pictures are to be mostly the same
with only a few differences.

38 31

www.manaraa.com

Chips Technical Report

Pictures are drawn for each display object by selecting graphical primitives from the main menu and
then describing their sizes and where they are to be placed using the mouse cursor.

32 3 9

www.manaraa.com

Chips Technical Report

5. A Session with Chips
In this section, we will describe a sample interaction with Chips. We will go through the creation ofa
simple class of domain object, called a FaceDomainObj, to demonstrate the interactive facilities for
creating and modifying part of an interface.

5.1 Creating a new domain object

To create a new domain object class a programmer first specializes the class DomainObject. This is
done from a Chips Browser, selecting Add New Class from the title bar menu, sliding to the right, and
selecting Specialize Domain Object from the menu that appears. The selection is shown in figure 1.

Pecomp.ity
a doPoot
Sa.e
Pemo,efromeadu tt
Change dl spl4y 'node
Mao hie to broser
ielecr Foy
Edit Fly : on, s
Eli, Fur ions
E tit nstanr.s

enable
Harocop hie

ay
1,1 N 'JON,

L.iociar_bict
pe.iallLe Sub
!rte.-414:e Picture Specih...ation
Specialite E en,Stream

pitci,lite C onnection

Figure 1. Specializing the class DomainObject from the browser

This creates the new class, FaceDomainObj. This class will inherit the functionality and properties
needed by objects with graphical images.

5.2 Editing the display object ofa class of domain object
Once this is done, a display object can be defined for this class of domain object and edited using the
Display Editor. First, to create the new display object, we select Add Domain Object from the Chips
brnwser (see figure 2).

eso4Nocie
MettIOCIY fElittolethOCI1

Collett (CieleteMethOO)
Move (MoveMethocl To
COPY (COOYMetP00 TO
Peneme (PtinameMytinocl
Edit

I,

Speciality
YooPiewlaytt,od

ec.ah.ronsigAiiinothamin

Ada .:onnection .:apao,nti
Mechanism .:apatNIAY

oemsm
ACICISuPfr
AdOPIewl`v
OcItle ro:
New

Figure 2. Adding a new display object

This creates an inspector that we will use to define our new display object. Since this new display
object will use the default properties, we need only declare the tag that we will use to refer to the
display object and then install the new display object by selecting Install from the title bar menu of the
inspector (see figure 3).

C ass
figure
mask
map

default
isp layObject

P ictureSpec if icat ion
PictureSpec if icat ion
PictureSpec if icat ion

Install
114- selection
Done

Figure 3. Installing a new display object with the Display Object Specifier

40
33

www.manaraa.com

Chips Technical Report

Next, we will edit the way our new display cbject looks using the Display Ed;tor. To do this, we select
Edit Display Object from the Chips Browser (figure 4).

eo WOO
MetPieds EttilMottioa
g la ACICIMItt,OCI)
'NOS .00WOMOthall

MOve .M0.04119,01 To)
COOP pVNIeTried To)
Pena.," faomm,..kiort -3nt CI soon 5a TO Leiecton

.t Mop nom m

Figure 4. Invoking the Display Editor from the browser

5.2.1 Using the Display Editor

The Display Editor is a modified version of the Interlisp-D graphical editor, Sketch. It provides an
interactive way to draw and edit pictures (figur. 5).

Plane selector menu

image window

11=2 inc.hca non Ihsplay hatnr
14 tl [rr,,
deuce

C 4104.
COPY,
:).

.0-4up
Jmirouo
Undo
DNauits

mo, v.
tiarclCoay

riot

of

COCCI mand menu

Figure 5. The Display Editor

5.2.2 Defining the figure picture of a display object
Using the graphical editor, we will first draw a figure for the display object of the class
FaceOomainObj. This figure will consist of a circle fo the outline of the face, two filled circles for the
eyes, and two curves for th. nose and mouth. The completed figure is shown in figure 6.

irMr=11 Prctur,Sp14.011:,1 tiOri 1).5111.1y hgtOle
I 'I t/ tr.,1

..ete
MOve
Copy
Chan
n3 'I

GrOUp
n.iOuP

Unc10
Cfaults
ina
Mov 05,.

$PCICOCY

Got"
/It

Figure 6. The figure picture of thu display object of FacenomainObj

4 1

5.2.3 Defining the mask picture of a display object
Next, we wil: define the mask picture of our display object. The easiest way to do this is to copy the
outline from the figure picture to the mask picture. This is done by selec .ing the Copy ontion from the

34

www.manaraa.com

Chips Technical Report

main menu, sliding to the right and selecting Copy to picture from the submenu that appears. L his
presents a menu of pictures currently defined for this display object. Selecting mask from this menu
establishes it as the picture to be copied to. We may then select any of the graphical primitives of our
figure to be copied. We select the circle that defines the outline of our display object.

We now switch to editing the mask pictuz by selecting mask from the control panel. The circle that
we copied from the figure is the only thing currently defined for this picture. If this circle is filled in
completely, the display object will be completely opaque. We'll just fill in part of the circle to
demonstrate how to make part ofa display object transparent. The completed mask picture is shown
in figure 7.

'ic tt Ire.;

I alts
delautt

Opaque parts

Transparent part

Picture...Specification Dispia 'Editor

u nGrour)
'Jr1,10

aUlt,
.3111
Move iewi
HarOCOOV

Get
e

Figure 7. The mask picture of the display object of FaceDomainObj

5.2.4 Defining the map picture ofa display object
Next we'll define the map picture of our display object. To do this, the outline is copied to the map
picture using the procedure described above.

We switch to the map picture by selecting map from the control panel. Since we want to be able to
button on the entire display object, the outline will be filled entirely. The completed map picture is
shown in figure 8.

MEM INctureSpecit ica tion Dospfay Edit oe
Pic to irei
figure
meek
m

.re
ma e
.:00Y

aelault

e

Grow:,
UnGrauo
1,ao

De? auit
Grtd

e
.dra': 7 r)

Gt

Figure 8. The map picture of the display object of FaceDomainObj

That completely defines our display object. Our display object is now available for use. To continue,
we select Exit from the main menu, saving the definition of the display object to its PictureSpecification
instances.

42
35

www.manaraa.com

Chips Technical Report

5.3 Using a domain object with a substrate
To use this domain object, we will need a substrate in which to place it. We can get a new substrate by
selecting the Chips Icon with the middle button and selecting Create a substrate from the menu that
appears (figure 9).

Create a sub9trate
Browse a file
Browse Saving Options
Edit Chi *Icon

Figure 9. Creating a new substrateusing the Chips icon

Selecting in the background of this new substrate presents a menu of all domain objects currently
defined in the environment (figure 10). You will notice that FaceDomainObj has been automatically
added to this menu.

°wooer+
DemoOomenOtneet
OanionObitet
CleiwOomObt
FacOorrainabl
internimiCannector
1.0310

Figure 10. The default background menu of a substrate

Selecting FaceDomainObj from this menu creates a new instance of the FaceDomainObj class and
places its display object in the substrate. We can create as many face chips as we want and place their
display objects in the substrate. Three face chip display objects are shown in figure 11. In this figure,
Face Domain Object Number 2 is overlapping Face Domain Object Number 3. Notice that Number 2 is
partially transparent, revealing part of Number 3 around the edges. This is a result of how we definet.
our mask picture.

43
36

www.manaraa.com

Chips Technical Report

Face Domain
Object 2

Face Domain
Object 3

Face Domain Object 1

Figure 11. Three Faces in a substrate

Selecting a display object with the left button pick,.; it up and drags it, followirg the cursor untilanother button is pressed. Display objects may be put down anywhere in the substrate or in any otheropen substrate on the screen. Selecting a display object with the middle button provides a menu ofoptions that allow a user to edit various aspects of the display t)bject and its associated domain obi 'et
(figure 12). One option, Edit r.isplay Representation allows the user to reenter the Display Editor,
changing any of the existing pictures or adding pictures to the display- object. We will add a picturethat declares a different button response for part of the display object. We will declare that sele:tIng
one of the eyes of this display obk.ct sends the me age Ouch to the domain object.

,

C.eieta from S..10301:e.
MCMW to a saecmc cm felon
!flip 0.solay Oblect

4it Flespon es IV Seiection
Switch Tag
Name Display Obiect
Sena Message to Display 0,1act
Make Methoc Menu Pot ()Malay .Dbiect

I sme Domain Object
hitcn Cepiction

n meet Goma" .Db act
message tO (Domain ect

Figure 12. Selecting Edit Display .presentation from the middle button menu of a display object

5.4 Interactively changing a display object
We want to define a new picture for thin display object that will define an additional mouse-sensitiveregion. To add this picture, we select map from the control panel with the middle mouse button
pressed and then select Subdivide picture from the menu that appeai s (figure 13)

44
37

www.manaraa.com

Chips Technical Report

Figure 13. Adding a new picture to the display object of FaceOomainObj

The user is then prompted to enter a name for this picture. The Display Editor creates a new picture
called eyes that will be used to draw the new mouse-sensitive region for the display object. It also adds
the name eyes to the control panel. To define this picture, we need only copy the eyes from the figure
picture to the eyes picture. Copying is done as described above. The completed eyes picture is shown
in figure 14 below. Note that the eyes picture does not define the visual appearance of the eyes, which
is done by the figure picture, but merely defines a new mouse-sensitive region.

,,713=711)',Ettur-otipetatrcation ()replay falltmr
.tr ft.-Pc

Figure 14. The eyes picture of the display object of FaceOomainObj.

Exiting the editor redefines our display object, defining a new mouse-sensitive region. To use this
mouse-sensitive region, we must alter the display object's response to selection with the mnuso cursor.
This is done by selecting the display object with the middle mouse button pressed and selecting Edit
Resportie to Selection from the menu that appears. This invokes the Interlisp-D editor DEdit on a form
that describes how this display object is to respond to selection. We will add an expression to this form
that tells the display object to send the message Ouch to its associated domain object whenever one of
its eyes are selected. Figure 15 shows this form.

38
45

www.manaraa.com

Chips Technical Report

Ottfit of inepinftsion
.3p
090 11COLE)f `.rEl Op.

et AFT

Figure 15. Editing the response to selection form for a display object

When an eye is selected from one of the faces in our substrate, the message Ouch is sent to that domain
object and the corresponding n Mod is executed, ringing bells and printing a message in the substrate
window (figure 16).

Response to
selection

Figure 16. Selecting an eye of the display object ofa face domain object

5.5 Conclusion

As you can see, using Chips, it is quite easy *.) define what a piece of your interface looks like and ,o
determine its response to selection with the mouse cursor. Now that we have gone this far, it is easy to
go ahead and develop the domain object's functionality more fully using the display object on the
screen as the access point. The display object's selection response can be changed interactively The
way the display object looks can be changed by changing the drawing. The internal data structures
and the methods ',fining a domain object's behavior can be accessed interactively In short, the user
interface can be quickly and easily modified.

46

39

www.manaraa.com

Chips Technical Report

References
Bobrow, D. G. and Stefik, M. The Loops manual. Tech. Note KB-VLSI-81-13. Xerox Palo Alto
Research Center, Palo Alto, CA, 1981.

Bonar, J and Cunningham, R. Bridge: An Intelligent Tutor for Thinking about Programming In
New Horizons in Intelligent Tutoring, edited by John Self, 1986.

Borning, A. The programming language aspects of ThingLab, a constraint oriented simulation
laboratory. ACM Trans. Program. Lang. Syst. 3, 4 (Oct. 1981), 353-387.
Duisberg, R.. Animated graphical interfaces using temporal constraints. In Human Factors in
Computing Systems: CHI'86 Conference Proceedings (Boston, MA). ACM, New Yt 't, 1986, pp. 83-96
Goldberg, A. J., and Robson, D. Smalltalk-80: the Language and Its Implementation, Addison-Wesley,
Reading, MA, 1983.

Hutchins, E., Hollan, J., and Norman, D. Direct Manipulation Interfaces, User Centered Systems
Design, edited by Donald Norman an Stephen Draper, Lawrence Earlbau:n Asso, Iles, Hillsdale, NJ,
1986.

Lesgold, A., Bonar, J., and Ivill, J. Toward Intelligent Systems for Testing University of Pittsburgh,
Learning Research and Development Center Technical Report ONRJLSP -1, March 1987
Norman, D. Design principles for human-computer interfaces. In Human Factors in Computing
Systems: CHI'83 Conference Proceedings (Boston, MA). ACM, New York, 1983, pp. 1-10.
Robson, M. B., Maass, S., and Kellogg, W. A., Designing for Designers: An Analysis of Design Practice
in the Real World. In Human Factors in Computing Systems and Graphics Interface '87 Conference
Proceedings (Toronto, Canada). ACM, New York, 1987, pp. 137-142.

Sannella, M., Interlisp-D Reference Manual. Xerox Artificial Intelligence Systems, Pasadena, CA,
Oct. I 985.

Schultz, J. personal communication, 1987.

Sheil, B. Power Tools for Programmers, Datamation Magazine, Feb. 1983

Stefik, M., Bobrow, D., Mittal, S., and Conway, L. Knowledge Programming in Loops: Report on an
Experimental Course, AI Magazine, Vol 4, No. 3, Fall 1983, p". 3-13.

4 7 41

www.manaraa.com

Chips Technical Report

Appendix A: Special Programming Techniques
Several aspects of the Chips program code take advantage of unique features of an open Lisp-Lased
environment. While the techniques described in this sectior are not part of Chips, per se, they are
interesting and generally useful.

A.1 A General Caching Function

Chips uses a function called Cache Results to be used with functions that have no side-effects (except
perhaps storage allocation) and consume large amounts of time or space to compute. Cache Results
takes a function and its arguments and returns the result ofapplying the function to its arguments
However if the same function and arguments are supplied to Cache Results again, it simply return the
same result it returned previously. This function is often used for pop up menus. Creating pop up
menus is slow and it consumes large amounts of storage.

A.2 Self-Inspecting Code

When the programmer defines -. new subclass of Chip, the menu whose items are all the subclasses of
Chip becomes obsolete. There are three ways of dealing with this: one, ignore the problem and let the
programmer fix this r.-enu by hand, two, modify the method for defining a new subclass so that it
updates the menu or in some way records the fact that the menu needs to be updated, or three, have
the function that produces the menu check what classes are currently defined and if new ones have
appeared, create a new menu, otherwise use the old oae.

Using the cache and scheme three in the preceding paragraph, it is trivial to create menus that
automatically update themselves only when necessary. A ., en a menu is needed, the list of items that
should be on the menu is used with CacheResults. A new menu will be created only if the list is
different.

Schemes like this simplify the code. The programmer need not remember to update the list after
defining a new class; the system notices automatically.

A.3 Fast Bitmap Intersection

Frequently direct manipulation interfaces need to determine whether irregularly shaped objects
overlap. It is possible to take advantage of the fact that BITBLT is a very fast operation on Xerox 1100
Series workstations. The shadow bitmap and the relative displacement of one object from the other
are used in a series of four BITBLT operations, and one BITBLT-like operation to a scratch bitmap
Figure 1 illustrates the procedure.

48
Appendi.r1A

www.manaraa.com

Chips Technical Report

Shadow A

Shadow B

Region occupied by
Shadow 1 and Shadow 2
(not constructed)

Procedure for Intersecting Bitmaps

1 Clear the scratch bitmap. 2 Paint Shadow A.

3 Erase Shadow B. 4 Invert Shadow A.

Figure 1. Intersecting bitmaps

If the scratch bitmap is blank after this procedure is executed then the two objects do not overlap. If
the scratch bitmap is not blank then the black areas will be the areas that are common to both
shalows with the given relative displacement.

It is important to note that it is not efficient to use the Interlisp-D function BITMAPE.';T to scan for black
pixels. Clips provides a function that does this scan efficiently called \BITMAPCLEA RP.

A.4 The EditWhen Macro

The EditWhen macro is used throughout Chips to provide uniform access to the underlying code of the
interface. The macro itself is very simple and is described below:

(Edit When keyNameorExpr who)

Parameters:
[Macro]

keyNameorExpr either the name of a key (on the keyboard) or an expression
who the name of a function or method

If keyNameorExpr is the name of a key, determines if the key is pressed or else keyNameorExpr is
evaluated. If the key is pressed or the expression evaluates to a non-NIL value, whichever the case,

www.manaraa.com

Chips Technical Report

the function or method who is entered with all bindings set to their values during evaluation Upon
exiting the editor, evaluation proceeds from the point of entry.

-EditWhen basically allows a user to set up a conditional breakpoint in the code. We have used this
macro to provide a uniform interface to the code of Chips. Throughout Chips we have strategically (we
hope) placed calls to EditWhen that look like the following:

(EditWhen OPEN functionOrMethodName)

This allows a new user of Chips to find out about the code that is used to perform various interface
functions by performing whatever action that he or she is interested in while holding down the OPEN
key. So for example to examine the machinery behind figuring out how Chips determines what
graphical objects are selected by pressing a mouse button, the user needs only hole Town the OPEN key
and then select a display object, a substrate, or whatever, with the mouse curor This will successively
open each function or method as it is called, allowing the user to examine the function or method and
then proceed by exiting the editor, continuing to hold down the OPEN key We hope this will help
people become familiar with the underlying code of Chia..

5()
Appendix3A

www.manaraa.com

4

Chips Technical Report

Appendix B: Applications
Digital C;rcuit Editor and Simulator

A simple editor and simulator for digital circuits was created to help develop and demonstrate Chips
See figure 1 below (readers familiar with electric circuits may notice that the ground is missing)
Many common integrated circuit components are defined, includirg. AND gates, OR gates, NOT
gates, NAND gates, signal sources, wires, and switches. Creating the circuit editor was easy once
classes for circuit components were defined and their schematics were drawn all that was required
to build a circuit editor were a handful of methods for interactively connecting components with wires.
The input/output behavior of the primitive gates are specified as a simple logical expression in Lisp
The input/output behavior of the NAND gate is defined using a circuit consisting of an AND gate
wired to a NOT gate. Thus demonstrating that new components, like the N'ISD gate, can be defined
completely interactively without programming using the circuit editor and other editors provided by
Chips. Signal propagation is implemented as a discrete event simulation. When a circuit component
changes state, it recomputes its outputs and if they have changed, it signals the objects it is connected
to. Each signal is considered an event, and is placed in a global event queue by sending a message to
an event manager object. The event manager dispatches events in its own process so various control
regimes can be implemented.

Figure 1. A digital circuit.

51
Appendix1B

www.manaraa.com

Chips Technical Report

Bridge

Bridge [Sonar and Cunningham, 1986) is an Intelligent Tutoring System to teach introductory
programming. Bridge teaches programming based on the iota of programming plans. Programmingplans model the conceptual understanding which allows experienced programmers to combine several
programming language constructs into common idioms. These plans are the same for any procedural
programming language, though corresponding code would be slightly different. For example, when
writing a program it is often necessary to keep a running count of something. The idea of keeping a
count always has certain features associated with It, such as incremeneng the counter and using the
value of the counter.

Bridge teaches programming by "bridging the gap" between a student's understanding of specifying
procedures in a natural language like English and the understanding needed to write a procedure in a
programming language. The student works through three phases to specify a procedure in Bridge: anatural language phase, a programming plans phase, and a programming language phase. The
studtat may request feedback about a proposed solution at any time.

In Phase 1 of Bridge, (see figure 2), the student constructs a solution to a programming problem by
selecting and moving English phrases selected from a menu. Each phrase is a chip. These chips
format themselves when the student moves them, highlight themselves at various times, and
disappear when the student discards them.

X

Coastetulatoons! Your
proemm is comet for
Phu. I.

Click ow "Done
With P Imam" top on to
Phase 2 .

lif;! :.""!.,.1f11,12,---:
t11011 :; at!.1::;44:i:
iillwiii-!,!'t''I'vilil;-

1111011111ifidr,:',
illIl tiAlp.t/11111.1::114=:-
pill 401f.amtil:Nrv:
Il* iiio! t',11 ,, ---,".; ... , : ..,..1:::!,, , .

24 -di-J.-,...: _....!---, <1.

1

;11,n 1 pi1412
.

1'.;!'il t IIU
. -.as 1...I....Ai,

%nem poems that asks the
1 um V heisbe would liketo

'Adis.* toppers. It the user's

temenee w "ye". the tad to
two omen. comput!:he sun%
end punt out the vault. If the
ueet s capons. d "no". punt
out 'thank you anyway
osessay. -"i

4

.2 Az

1 V I: . .4:;:,.4.;

sd
II Ste is

Pak .. Al he mints Io odd two r. .cors

tin response is ye ...
Mod in ... on Mlisjor
Rood in . In Wailer
Compute . . ulna sum

Print . Alm sum

°Marvin . .

Print ...'"flumk you anyway"

Figure 2. Phase 1 of Bridge

In Phase 2, (see figure 3), the student constructs a solution to the problem using a visual programming
language (VPL). Each icon in the VPL corresponds to a programming plan. The student builds a
solution by assembling the programmingplans much like putting together a jigsaw puzzle.

52
A ppendix2B

www.manaraa.com

4

ift;,
prlitf
Done with

t aMI
Inurt

program
ns

t Norms
Start Phase 2 Over

Sot r .) on cannot
put your plans
down here because
they overlap
another plan.

MEIZEIMMIEMEMEMIMIN
Ask ...II he mob to add Iwo integers

Ihe response is yes .

Reed it . an integer

Reed in . . an nteger

Compute Mn sue

Print Ake sum

othsrvise

Print . Thy* you anyway"

Chips Technical Report

'4:

L4_
..Tkt;
1.41

,

rl ual Solution

77----
Prompt Plan

tonditInnei Plan

(i==---
,r,s

r1Th_TntmS1oInput
Plan

Mao - __

input
rats

Compute
Play

.via

!Ietset
flag
Pnr.

--r7----

Figure 3 Phase 2 of Bridge

In Phase 3, (see figure 4), the student constructs a solution to the problem in Pascal, using a syntax
directed editor.

53
Appendix3B

www.manaraa.com

Chips Technical Report

Please
position the
mum where
you would like
the statement
to he.

true
Instruction.

Petal
Start Over

Br
ral 4,1rUnn,

1,4. am 4

yr

ION 'Ow
10-4,44

i. I pry... ?Mtn

e
fon.-

Er I

Pot,

Figure 4. Phase 3 of Bridge

We used Chips to develop the visual programming language in Phase 2 of Bridge.

To construct a prograr.-. using the VPL, the student moves the plans -round on the screen and attaches
them together by fitting a tab from one plan into a slot in another plain.

Different parts of the plans respond differently to selection by the mouse cursor. To use the value from
one plan in another part of the program, the student selects the box marked Value. When this is done,
an instance of the class ValueChip is created, attached to the cursor, and may then be placed inside
another plan. Figure 5 shows a ValueChip instance that is about to be placed inside the Output Plan.

4

Appendiz4B

www.manaraa.com

Visual Solution

Prompt Plan
0,,Dret

I "had ri

1

Conditional Plan
TI:a6 7, n ruInt

l`
"VOS " III I

when True Atner, F

Output
Plan

Input
Plan

INe

f

Input
Plan

r Wu*

Compute
Plan

r vs

Output
Plan

...giant
I

."

p,nt
6/16011
:JAMMet

-r7_----

Chips Technical Report

Fir.li-e 5. The Visual Programming Language from Phase 2 of Bridge

Once ti' student has constructed a proposed solution to the problem, the program may be executed.
As each plan is executed, it inverts. Also, as values are updated, these values animate throughout the
program to the location of their respective variables. Thus the VPL provides the student with an
explicit view of both the control flow and the data flow during execution.

This application proved esi.zially difficult because so little is known about the effective use of visual
programming languages. Chips enabled us to do extensive iterative desin of the language,
developing six significantly different versions in three months.

55 Appendix5B

www.manaraa.com

Chips Technical Report

MHO

MHO is an intelligent tutoring system for teaching basic direct current circuits the', automatically
generates problems for the student based on a model of what the student understands and
dependencies among the domain concepts (Lesgold 871. Ste figures 6-8. Circuits and meters are
created with chips (instances, not integrated circuits). The circuit layouts are automatically
generated. 2he student uses the meters to measure current, resistance and voltage between any two
points in the circuit

W.

system. This is also a goa...1 time to become comtortab4
working with the different machine capabeties.

When you we ready to answer the question please
button an be ready to answer box located in the circuit
window.

Utilizing the calculator, determine what the reading
from c to d wit be.

.4=IMIIMIMM=IIMA

Predict answer

be cirsub /
7 13 x

4 3 -
1 2 3

. nig)
1111iiiiIINMEMOOPIIIINIM.

Figure 6. A screen from MHO, ..n intelligent tutoring system for DC circuits.

Appendix6B
56

J

1

www.manaraa.com

Soo
oedrddena

Notebook

Vab s 8804.0
led s 189
Ved s 0.0
Ifs s -189
Vhi -1131.0

Enter
into n

t label

E
ITo

ora
G to

Es te
lode

I norncvo
Lapel

Chips Technical Report

Dialog Wincirmn

Greetings' Here in exploration mode you will be given
the opportunity to famdarue yourself with our tutoring
system. This is also a good time to become comfortable
working with the different machine capabilities.

Choices

DoExercise

Exploration

MOWTopic

GhooseTopse

Browser

Quit Tutor

ITrace Ilindas

Figure 7. A screen from MHO, an intelligent tutoring system for DC circuits.

ty;

Appendix7B

www.manaraa.com

Chips Technical Report

Appendix8B

2

CZEI

1:11..11
ob

4

vo

S..
D. ideas

to m

as sea

ION 14N

bonsevo
. label

Ntitchook

lob 2

rater Ileadirg
bee Notebook

Oe re
Ierde

Node

benvo
label

: :.;. . . .

Figure 8. Using a meter to measure current between point a and point b.

58

www.manaraa.com

a

a.

Chips Technical Report

Voltaville

Voltaville [Schultz, 1987i is a discovery world for students to learn about direct current circuits A
circuit simulator and simple data collection and analysis tools are provided so that the student may
explore electricity in a systematic manner. See figure 9. Voltaville watches to see whether or not the
student actually is being systematic by searching for patterns in the student's behavior and by
prompting the student to mulate and test hypotheses.

58.8 I vOlTS

..os. 1,,I,: (hs

IMMEMIIIIMMIEMEIMINI=MMIMMI
lab 1.2 fldf -9.0 flfg 98

Notebook
1

into
Vac 4.8 Rbc 4.0 Ici 1.2
Rbc 4.0 Ref -9.0 Rkd 9.0
Vdc 4.8 Rag .6 4.6
Ida 8 Rhl 1.0 Vdl 4.8

aernove
tabet

Figure 9. Measuring a circuit in the Voltaville discovery world.

Chips was used to build n circuit editor and simulator, and se..Pral animated simulations to illustrate
concepts such as current flow. The animated simulations are part of a hypertext system of electricity
concepts, which students can browse for background information, terms, and concepts. Students
obtain a paragraph with illustrations by selecting a term from a menu, from a graph illustrating

59 Appendix9B

www.manaraa.com

Chips Technical Report

relationships between concepts, or from a concept description that contains mouse-sensitive terms.

I IV fl lo 4,m i'rItrfit . III G,w

If you would Skate see some Isaac definitions now, you cal t select the definition you want from either the tree or thelimb low. When you are looking ata definition mid, you m ay we some boldfaced words/phrases. If you select aboldfaced ommifeltrase, its definition will be displayed. To k iegin, Nieman item from the list or tree. When you haveinished looking at definitions., "tied CONTINUO from the lis t

a OCUIT

.7
CHAIM ./

.........-------; \
VOLTAGE f1/4\

CvAAM-1 DeCtul
CUIRINT VOLTAIRE SOW= RESISTO1 t SINES CIRCUS PARALLEL CIRCUIT

/ \ / \ "'N.C.__

/ \ ///
I

ARMOR AMC RR V"-LT *MWER OHM 01

time lit .1 fl 011 with

CO/won vocraot

Start Series Simobtios Start Parallel Simulatioa
This 'snubs tmn illustrates the motion of electrons in a serial and
parallel eireust Both :irCuite have Wit, earn* voltage Source
Both the resistors have the same resistance For eu *nobody, no
show only two charge Carrying electrons moving Mr Ougt
the circuit once

11
Figure 10. A screen from Voltaville, a discovery world for DC circuits.

The window labelled "Simulation with Charges" in figure 10, displays an animation sequence. Snap
shots of the animation are shown in figure 11.

1.1

Figure 11. A simulation explaining current flow by animating electrons.

C
Appendix1013

www.manaraa.com

Chips Technical Report

Glossary
AND gate a component a digital logic circuit with two inputs and one output; if

both inputs are true then the output is true, otherwise the output is
false; see also NOT gate

application interface the human/computer interface to a particular application
button o. to press one of the buttons of the mouse
Chips a computer program for building graphical human/computer

interfaces
class a template for a particular kind of object including methods for

responding to messages and vPriables
class browser a tool for examining and modifying classes and their taxonomic

relationships via a lattice diagram of classes in Loops
class library a collection of class definitions designed for some common purpose
connection a data structure provided by Chips for representing relationships

between objects
development interface the human/computer interface used to develop an application program
direct manipulation a method for a person to control a com7ute: program by manipulating

pictures that represent objects of interest
direct manipulation interface a human/computer interface that allows the user to command the

cumputer by selecting and manipulating cartoon 'ike icons, usually
with a pointing device, such as a mouse (see direct manipulation)

display n. the screen of the comp-ter; o. to depict on the screen of the computer
display object an instance of the class DisplayObject or one of its subclasses;

determines how a domain object will be displayed on the screen
domain. object an instance of a subclass of the class DomainObject
^omainObject a class of object that can be displayed as a mouse-sensitive picture
drag to move a picture of an object on the display by animating it
editor an interactive program for creating, displaying and modifying some

entity of interest; usually maintains constraints that would be tedious
to maintain by hand and provides a convenient intek face to the entity

Event Queue a queue of messages with time-stamps to be sent by an event queue
process in an order consistent with the time-stamps

figure a description of how a display object is displayed on the screen; stored
as an instance of the class PictureSpecification

graphical primitives programming language functions or menu options for drawing lines,
curves, and text, etc. on the display

icon a picture used in a human/computer interface to represent some object
or concept in the world

Image Editor a specialization of the Interlisp-D graphical editor, Sketch, which
allows a user to interactively design the looks of a particular display
object

inheritik ,ce an aspect of object of object-oriented programming When a new class
is created by specializing another class, it receives behavior from its
super class

inspector a tool for examining and modifying data structures in Interlisp-D
instance an object in the computer produced by a class
Interlisp-D a programming environment which provides sophisticated graphical

programming tools for the interlisp programming language
implemented on workstations

InternalConnector a class of domain object that establishes a connection between the
physical connecters of a domain object and its internal mechanism

Glossary 1

www.manaraa.com

Chips Technical Report

IV i.e., instance variable; a variable associated with an object whose value
is local to that object

Loops an object oriented programming language and tools for program
development integrated with Interlisp-D

map a list of elements, instances of the class PictureSpecification with
mnemonic tags, that name different parts of a display object;
determines the mouse-sensitive regiut 3f a display object

mask a description of which areas of a display object are to be opaque and
which are transparent; stored as an instance of the class
PictureSpecification

message a command to an object
mechanism a collection of domai . object instances, usually connected together,

representing a domain object's internal behavior
Mechanism Editor a specialized substrate for editing a domain object's mechanism
method a subroutine used by an object upon receipt ofa particular message
mouse event pressing or releasing one or more of the mouse buttons
mouse-sensitive an area of the workstation's display which can be selected with the

mouse to produce some effect
mouse-sensitive picture a picture (usually associated with an object) whichcan be selected with

the mouse to produce some effect
multiple inheritance a capability provided by some object oriented systems, including Loops,

which allows classes to inherit from more than one class
NAND gate a component of a digital logic circuit with two inputsand one output; if'

both inputs are true then Lie output is false, otherwise the output istrue; . AND is an abbreviation for Not AND; see also AND gate, NOT
gate

NOT gate a component of a digital logic circuit with one input and one output; if
the input is true then the output is false, otherwise the output is true;
see also AND gate

object an instance or class (see class, instance)
object-oriented programming a programming methodology based on the metaphor of communicating

objects, rather than procedures that operate on data types (see class,
instance, message, method)
an instance of the class PictureSpecification or one of its subclasses
that defines the display and edit representations for part of a display
object

physical connector a mouse-sensitive region of a display object that has special
significance to other display objects that may overlap it; used to
establish physical attachment between display objectsplane represents part of a display object in the Image Editor

select to move the mouse cursor to something ofinterest and press one of the
mouse buttons

Sketch the Interlisp-D drawing editor, allows the user to interactively
construct figures from graphical primitives

specialize to define a new class or method in terms ofan existing class or method
spy an instance of the class Spy or one of its subclasses that may be used

with a connection to redirect I/O or do recording of messages sent via
connections

submenu a menu that appear when the mouse cursor is slide out the right-hand
edge of certain menu items indicated by a grey triangle (0)

subregion a region within a region; may be arbitrarily shaped
Substrate a class of object appearing on the display as a rectangular window and

I, sed for displaying display objects, displaying prompts and processing
mouse events

picture specification

Glossary2 62

www.manaraa.com

user interface
management system

workstation

a

10

Chips Technical Report

a computer program that provides a collection of
interface elements, such as menus and dialog boxes; often include
interactive tools for building prototype interfaces
a single-user computer with a large graphics display, several
megabytes of memory, a processor capable of at least om allion
instructions per second, and a device for pointing to objects on the
display, such as a mouse

r-, 3

Glossary3

