DOCUMENT RESUME

ED 290 438 IR 012 986

AUTHOR Cunningham, Robert E.; And Others

TITLE Chips: A Tool for Developing Software Interfaces
Interactively.

INSTITUTION Pittsburch Univ., Pa. Learning Research and

Develorment Center.
SPONS AGENCY Office of Naval Research, Arlington, Va.

REPORT NO TR~LSP-4

PUB DATZ Oct #7

CONTRACT N00014-83-6-0148; N00014-83-K-0655

NOTE 63p.

PUB TYPE Reports - Research/Technical (143)

EDRS PRICE MF01/PC03 Plus Postage.

DESCRIPTORS *Computer Graphics; *Man Machine Systers; Menu Driven
Software; Programing; *Programing Languages

IDENTIFTERS Direct Manipulation Interface' Interface Design

Theory; *Learning Research and Development Center;
LISP Programing Language; Object Oriented
Programing

ABSTRACT

This report provides a detailed description of Chips,
an interactive tool for developing software employing
graphical/computer interfaces on Xerox Lisp machines. It is noted
that Chips, which is implemented as a collection of customizable
classes, provides the programmer with a rich graphical interface for
the creation of rich graphical interfaces, and the end-user with
classes for modeling the graphical relationships vf objects on the
screen and maintaining constraints between them. This description of
the system is divided into five main sections: (.) the introduction,
which provides background material and a general description of the
system; (2) a brief overview of the report; (3) detailed explanations
of the major features of Chips; (4) an in-depth discussion of the
interactive aspects of the Chips development environment; and (5) an
example session using Chips to develop and modify a small portion of
an interface. Appended materials includr descriptions of four
programming techniques that have been found useful i1a the development
of Chips; descriptions of several systems developed at the Learning
Research and Development Cente:r using Chips; and a glossary of key
terms used in the report. (EW)

AEKXAARAKRAARRAARAAR A A AR A AR A A h A Ak hhkhkhkkhkhhkhkhtkhkhhkhhkhkkhkkkhhkkkhkk

* Reproductions suppiied by EDRS are the best that can be made *

* from the original document *
KRR ARARAARARRRAR AR ARRRRAA A AR A AARARA AR R AR AREX sk kkkkkkk thkkdkdhkkk

University of Pittsburgh

LEARNING RESEARCH AND DEVELOPMENT CENTER

P Chips: A Tool for Developing Software Interfaces Interactively
“

i; i US DEPARTMENT OF EDUCATION

< Office of Educational Resesrch and Improvement

'é; EDUCATlONALcFéEN%%gF:EEI%)INFORMATION

f-“' *Tms document has been reproduced as

received from the person or organmization
onginating 1t

g O Minof changes have been made to improve
‘ reproduct.on quality
e 0 o ey T e e
z Robert E. Cunningham
John D. Corbett
f' and
: Jeffrey G. Bonar
October, 1987
| Technical Report No. LSP-4
3
A i
:,'§
? This work was supported by the Office of Naval Research, under Contract No.
N00014-83-6-0148 and NO00014-83-K-0655. Any opinion:, findings, conclusions, or

recommendations expressed in this report are the '~ of the author., an3d do not neressarily
i‘."sQ, reflect the views of the U.S. Goverpm' at.

Reproduction in whole or part is p=-mitied for any purpose of the United States
Government,

Approved for public release; distribotion votimited.

o BEST COPY AVAILABLE

SIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a REPORT SECURITY CLASSIFICATION 1b RESTRICTIVE MARKINGS
22 SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT
2b DECLASSIFICATION / DOWNGRADING SCHEDULE Approved for public release; distribution
unlimited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S} S MONITORING ORGANIZATION REPORT NUMBER(S)
UPITT/LRDC/ONR/LSF-4
6a NAME OF PERFORMING QRGANIZATION 6b OFFICE SYMBOL |7a NAME OF MONITORING ORGANIZATION
Learning Research & Development (If applicable) Personnel & Training Research Programs
Center, Univ. of Pittsburgh Office of Naval Recearch (Code 1142PT)
6c ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)
4 3939 O0'Hara Street 800 North Quincy Street
Pittsburgh, PA 15260 *rlington, VA 22217-5000
Y 8a. NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL |9 PROCUREMENT INSTRUMENT IDENTIFICATION NMBER
ORGANIZATION (If apphcable)
N000Q14-83-K-0655
8c. ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PRO.ECT TASK WORK UNIT
ELEMENT NO NO NO ACCESSION NO
61153N RR04206 RR04206-00 |NR442¢524

11 TITLE (Include Security Classification)

CHIPS: A tool for Developing Software Interface Interactively

12 PERSONAL AUTHOR(S)

__Robert E. Cuppnipgham. John D. Corbett and Jeffrey G. Bonar

135 TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Vear, Month, Day) [1S PAGE COUNT
Technical FRoM _____To______]1987, October 23 65

16 SUPPLEMENTARY NOTATION

rogramming

nt

17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and ident: by block, number)
FIELD GROUP SUB-GROUP Human/computer interfaces; Graphical interface; Direct manipu
lation interface; Visual programming; Objegt-oriented program
ming; Sér Jf.ngefface mangge§en% syétemsg P pProg

ng software employing grap computer interfaces on Xerox LIST machines.
the programmer, Chips provides a rich graphical interface for the creation of rich graphical
interfaces. In the service of an end user, Chips provides classes for modeling the graphi-

Chips.

extension to Interlisp-D. The three fundamertal classes provided by Chips are DomainObject,
DisplayObject, and Substrate. D¢ 1inObject defines objects of the application domain,
DisplayObject defines mouse-sensitive graphical objects, and Substrate defines specialized
windows for displaying and storing collections of instances of DisplayObject.

19iABSTRA T (Continue on_reverse if necn a:f.yc g’f’ ﬁﬁatéfryl /w block number) ch%gs is anxinterﬁctive tgol for gg\{elop—

cal relationships of objects on the screen and maintaining constraints between them. Several
large applications, including tutors for programming and electricity, have been developed wit

Chips is implemented as a collection of customizable classes in Loops, the objected-oriented

L

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASS FICATION
X UNCLASSIFIEDIUNUIMITED (] SAME AS RPT O oTiC USEKS Unclassified
223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Are s Code) | 22¢ OFFICE SYMBOL
Susan M. Chipman (202)696-4318 ONR 1142PT
EmM 1473, 8aMmaAR 83 APR edition may be usea untif exhausted

SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsotete 3 UNCLASSIFIED

ERIC

IToxt Provided by ERI

Chips: A Tool for Deveioping Software Interfaces Interactively

Robert E. Cunningham, Joha D. Corbett, and
Jeffrey G. Boaar

Learning Research and Development Center
3939 O’Hara Street
University of Pittsburgh
Pittsburgh, Pennsylvania 15280

Technical Report No. LSP-4

This work was supported by the Office of Naval Research, under Contract No.
NO00014-83-6-0148 andN00014-83-K-0655. Any opinions, findings, conclusions, or
recommendations expressed in this report are those of the authors, and do not necessarily
reflect the views of the U.S. Government.

Reproduction in whole or part is permitted for any purpose of the United States
Government.

Approved for public release; distribution unlimited.

Chips Technical Report

Abstract

Chips is an interactive tool for developing software employing graphical human/computer interfaces
on Xerox Lisp machings. For the programmer, Chips provides a rich graphical interface for the
creation of rich graphical interfaces. In the service of an end user, Chips provides classes for modeling
the graphical relationships of objects on the screen and maintaining constraints between them
Several large applications have been developed with Chips including intelligent tutors for
programming and electricity.

Chips is implemented as a collection of customizable classes in the Loops object-oriented extensions to
Interlisp-D. The three fundamental classes provided by Chips are:

DomainObject which defines objects of the application domain — the domain for which the
interface is being built — and ties together the various functionalites provided by the Chips
system,

DisplayObject which defines mouse-sensit;ve graphical objects, and

Substrate which defines specialized windows for displaying and storing collections of instances of
DisplayObject.

A programmer creates an interface by specializing existing DomainObjects and drawing new
DisplayObjects with a graphics editor. Instances of DisplayObject and Substrate are assembled on
screen to form the interface. Once the interface has been sketched in this manner, the programmer
can “build inward,” creating all cther parts of the application through the objects on the screen. Chips
makes this easy by supplying simple and direct access to the source code and data structires of an
application. Chips not only allows one to build powerful graphical interfaces, but provides the same
sort of powerful graphical interface to the programmer building the interface.

Keywords: human/computer interfaces, graphical interface, direct manipulation interface, visual
programming, object-oriented programming, user interface management systems, programming
environments.

Typographic Conventions

Technical terms appearing in the glossary are italicized and underlined upon first use, i.e display.
Menu selections are printed in a sans-serif font, i.e. Edit Mechanism. Class names are printed in a bold
faced sans-serif font, i.e. Substrate.

Chips Technical Report

Acknowledgments

We would like to thank several people who provided important help and support during the
development of Chips.

We would like to acknowledge several people who developed applications using Chips, often putting up
with and working around -eficiencies and bugs in early versions of the system. They provided many
helpful suggestions that were incorporated into the design, discovered problems that we had missed,
and provided much needed evidence that our ideas were on the right track. These diligent folks are

Andrew Bowen, Joyce Friel, Dan Jones, Steve Kalinowski, Debra Logan, Bob Merchant, and Jamie
Schultz.

Stewart Nickolas contributed important ideas to the project as well as providing inspiration for what
can be done with Xerox Lisp machines.

Arlene Weiner tried her best to teach us how to write. In the brief time she had to work with us, she
helped us decide upon our audience and present our ideas coherently.

Doug Roesch did early work with the latest version of Chips and created a lab for beginning Chips
users.

Marty Kent worked on FlowChips, a precursor to Chips, and left us with many good ideas.
Joyce Friel, Stewart Nickolas, and Doug Roesch read and commented on earlier drafts of this report.

Dr. Alan Lesgold, the associate director of the Learning Research and Development Center, is
responsible for the resources we use in our work and responsible that those who grant us resources are
satisfied with all our work in the Intelligent Tutoring Systems Group. Chips could have easily been
written off as a fruitless digression without his faith in us and his vision. Alan provided much needed
support and guidance, both professionally and persunally, as well as creating an environment ir which
we could do our work. This project could not have happened without 1im.

Jeff Bonar started and managed the Chips project. The Chips syscem itself was designed and
implemented in collaboration between John Corbett and Bob Cunningham. We gratefully
acknowledge, however, that Chips was built using as much of Interlisp-D and Loops as we could
rationally incorporate. Bob Cunningham did the lion's share of the writing of this document. John
Corbett wrote earlier drafts, and participated in the writing.

Chips Technical Report

Table of Contents

Lo Introductioncoooooviii i e s o e 1
1.1 The Contributionof Chips 1
1.2 Current Approaches to Interface Development 1
1.3 The Chips Approach to Interface Development.... 2
1.3.1 Exploring and Testing Interface Designs. 2
1.3.2 Objezt-Oriented Interface Design.coccoooeveniin o o 2
1.3.3 Controiling Programs by Manipulating Pictures....... 3
1.3.4 Mocking Up an Interfacecoooooovocoioeoeeeee 3
1.3.5 Establishing Relationships Between Application Objects 3
1.4 Interlisp-D/Loops Implementation................ e ey vere eteaaee —eeaen 3
2. OVEIVIBW c.ooooiiiiiei et eeeeeee e ee e oo 4
3. CRipS SErUCLUTeS ... oo s oo 5
3.1 Domain Objectsas Instances.................ccccooocovoee ovemeree T 5
3.1.1 Display Objects’ Graphical Data Structure......~ 5
3.1.2 Multiple Display Objects and Multiple Picture Specifications 7
3.1.3 Physical Connectors............. oocvvviviioicirs oo o 8
3.1.4 Graphical Relationships.............coccoovcivvice v oo T 8
3.2 TheSubstrate.............ccccocoimriiioieceeeoeee e 8
3.3 The Event Queue............cccocooie ovmiiieieeeeeeeeeeeeeeeeeooo o 9
3.4 Connections..............cc..oouiiiiiiiii e e 10
8.5 MeChaniSmscocooooiieiuiiiiiiiiieiiet oo 12
3.6 Events Streams and Display Streams................cocoocoe overeev 13
3.7 Saving Chips Classes............... woovevuiueiioeieoeeeeeeeeoeooe oo 14
4. Chips Interactive Environmentcc..cooooooomoes T 15
4.1 Chipseon......oooivii e e e 15
4.2 ChipsBrowserccooooouiuoiuiioiiiieieieeeeeeee oo 17
4.3 Modifying an application through the development interface e e e 20
4.3.1 Displaying overlappir.g display objects...........c.cccco... ... " 20
4.3.2 Interactive editingof display object instances........................... 22
4.3.3 Options available by selecting & substrate............................ .. . 26
4.3.4 The Display Editor............ccco..ooooviiviimieeo 30
5. A ession With ChiPScc.c..oeuivoiuiiiiieiiieceeeeeeeeeee o 33
5.1 Creating a new domain object.....................ccovvvovvemoermsonee T 33
5.2 Editing uhe display object of a class of domain object............................_ .. "7 33
5.2.1 Using the Display Editorcoooooeomveeoo 34
5.2.2 Defining the figure picture of a display objest ... 77" 34
5.2.3 Defining the mask picture of adisplay object__ " 34
5.2.4 Defining the map picture of a display object~ 35
5.3 Using a domain object witha substrate T .36
5.4 Interactively changing a disp1 vobjectcoccoooeo oo T 37
5.5 COonCIUSIONco.ooiiiiee e 39
REferences....ooov.oiiiictce e T 41
Appendix A: Special Programming Techniqueso....ooooooo wee e .. Appendix 1A
A.1 AGeneral Caching Function..................ocooooooomvi Appendix 1A
A.2 Self-Inspecting Codeccoovevmeeeerooeeoeeee T .Appendix 1A
A.3 Fast Bitmap Intersection..................... coooovevvvieeo .o ... Appendix 1A
A.4 The EditWhen Macro.........c...cococovuiieinieoeoiooeeeeoooo o Appendix 2A
Appendix B: Applicationscccooooioioiiins oo Appendix 1B
B.1 Digital Logic...........ccocoovmiiiieiioioies oo Ap,endix 1B
B.2 Bridge VPL............ccooooiit s oo e e Appendix 2B
B.3 MRBO ..o e Appendix 6B
... Aprendix 9B
... Glossary 1

111

Chips Technical Report

1. Introduction

Creating good human/computer interfaces is a notoriously difficult task. Furthermore, our current
best estimates indicate that interface design consumes 50% of the time on a large programming
project. Even with that large time budget, the interfaces produced are usually difficult to dehug and
modify. This problem is compounded by the lack of any theory, or even consistent design guidelines,
that could guide the development of interfaces. Even the most carefully thought out interface is likely
to need some redesign when tried with real users.

Chips has been created to simplify the development of sophisticated interfaces. In particular, Chips
can cut the time needed to implement a prototype interface by a factor of ten. Chips allows interfaces
to be designed, tharoughly testad, and then discarded for more effective designs. With the extended
amount of empiricai experieace afforded by the use of Chips, there is the possibility for a
comprehensive theory of interface to emerge.

To create an interface in Chips, the programmer uses graphic editors to mock up interface designs by
drawing and ar:anging objects that appear on the computer’s display. The application underneath the
interface is created by building inward from this mock-up. Typically, a Chips user is building a direct
manipulation interface (see, for example, Hutchins, et al. [1986].) A direct manipulation interface
allows the user to command the computer by moving and selecting icons designed to behave like the
objects they represent.

1.1 The Contribution of Chips

Chips supports the development of direct manipulation interfaces directly. Chips objects can be
created, displayed, and manipulated directly. All the difficult algorithms for smoothly dragging an
icon across the screen, having that icon interact correctly with other icons it moves over and near, and
" connecting mouse or keyboard behavior to underlying functionality are provided in Chips. Chips
provides extensive support for editing the properties and behavior of an application interactively,
through the interface itself. Finally, Chiys allows an interface to be simply saved and rescwored. In
summary, Chips allows the programmer to treat an interface as a object for 1nspection, manipulation,
and design.

The key potential of Chips is that it provides a sufficiently high level interface design language that a
theory of interface design can emerge. In particular, Chips supports a rich set of svntactic
relationships for objects in a diagram. Although the key difficulty in a theo"y of interface design is
relating the syntax of the diagram to the underlying semantics of the domain being represented in the
diagram, the sysiematic syntax of Chips’ diagrams allows for a direct attack on representing
semantics. The phrase “syntactic relationships in a diagram” is meant to refer to the 2-D physical
relationships petween the graphic elements in a diagram. For example, one icon may be above
another icon, connected to another icon with a line, or have various mouse-sensitive areas (places
where a user can button and invoke a program).

1.2 Current Approaches to Interface Development

Most interfaces are written in traditional programming languages. These languages supply primitive
elements, such as commands for drawing lines and printing text, leaving the programmer to construct
more sophisticated objects such as menus. This is time consuming and often leads to complex and
idiosyncratic interfaces.

User Interface Management Systems (UIMS) {italicized underlined words also appear in the glossary]

improve this situation by packaging common elements of interfaces so they canbe reused. In addition,
if the UIMS itself has an interactive interface, it may be possible to create entire application interfaces
without programming.

Chips Technical Report

For many applications, a good UIMS is sufficient, however it is not clear what belongs in a good L IMS.
So rather than providing several specific interface elements, Chips provides two generic interface
elements and touls for specializing them.

1.3 The Chips Approach to Interface Development

To create an interface in Chips, the programmer uses graphics e~ "ors to mcck up interface designs by
drawing and arranging the objects that appear on the computer’s display. It is only a slight
over-simplification to say the application is created by drawing it on the display and adding
functionality by "building inward.”

1.3.1 Exploring and Testing Inferface Designs

Because so little is known about interface desigr, it is useful to try out various designs, especially with
potential users [Rosson, et. al., 1987]. The cost of this exploratory approach is prohibitive with
tragitional programming languages; this i3 true even with systems designed for exgloratory
programming such as *he Interlisp-D programiing environment [Sheil, 1983] unless the programmer
is 2 real master of interface design. Using Chips, one can e*meriment with many interface designs in
the time it takes to build a single interface without Chips.

For example, for the programming tutor Bridge, we designed and implemented six versions of a visual
programming language in three months. We estimate that this would have taken at least a yearand a
half without Chips.

1.3.2 Object-Oriented Interface Design

Objects on the display are more than pictures; they are objects that respond to the user’s actions, such
as selection with the mouse, and interact witl oue another. For a complete introduction to
object-oriented programming see Smalltalk-80: the Language and Its Implementation [Goldberg and
Robson, 1983].

Object-oriented programming is based on the notion of objec.s interacting by sending messages to one
another. An object is a sem‘-autonomous combination of a data structure and pre-edures for

responding to messages. Message names, unlike procedure names in most programming languages,
need not be unique, thus objects of different classes can use different methods to respond to a particular

message.

A new class of objects can be defined by specifying only how it differs from an existing class of objects.
The new class is said to inherit everything that it does not specifically define. The new class is calleda
specialization of those classes used to define it.

The generic interface elements referred to above are classes of objects; they are named DomainObject,
DisplayObject, and Substrate. Objects which are instances of the class DomainObjezt or any
specialization of the class DomainObject are called domain objects. Objects which are instances of the
class DisplayObject or any specialization of the class DisplayObject are called display objects.
Similarly, objects which are instances of class Substrate are called substrates. The terms domain

object, display object, and substrate are used (o refer to instances of these classes. Classes will be
referred to explicitly and printed in a bold sans-serif font, i.e. DomainObject.

Substrates are objects which appear as rectangular regions on the display. They are specialized
windows used to create domain objects and display their associated display objects. Domain objects
are focal points that allow the combination of the various behaviors of the the Chips system. Display
objects are mouse-sensitive objects with arbitrary pictures. DomainObject, DisplayObject, and

Substrate are the basic classes for objects in interfaces. They inherit many of the common aspects of

3

Chips Technicai Report

graphical inte aces, yet the programmer can specialize any aspect of them and thus is not locked into
the existing ways of doing things.

1.3.3 Controlling Programs by Manipulating Pictures

Chips is especially useful for constructing direct manipulation interfaces (DMI). These allow the user
to cornmand the computer by moving and selecting cartoon-like icons designed to behave somewhat
like the objects they represent. The Apple Macintosh employs direct manipulation extensively and is
widely considered one of the easiest computers to use for people who are not necessarily computer
specialists. The advantages of direct manipulation are widely recognized, [Hutchins, et. al., 1986].

Unfortunately, DMI are often difficult to construct and difficult to modify once they are constructed
The programmer needs to write programs to create the pictures, move the pictures a.-ound the screen,
determine what pict.are the mouse is pointing to, what pictizres on the screen represent, what to do
when an icon is selected, and so forth. Although programming languages provide commands for
drawing geometric figures and ways of sensing the mouse, these basic capehilities are far removed
from the task of directly man_pulating graphical objects.

Chips classes provide these aspects of DMI automatically. Once objects from Chips are created and
displayed, they can be manipulated directly; selecting an object with the mouse cursor causes that
object to animate and follow the cursor around the display or causes that object to display a menu of
operations to be performed on it or on objects related to it.

Chips provides extensive support for editing the properties and behavior of an application
interactively, through the interface itself, Every object of an interface that appears on the screen can
be edited by selecting the object and choosing the aspect of the object to edit. This behavior is useful
throughout the development process, so usually the programmer makes the application interface by
adding behavior and only disables the default behavior when it might confuse unsuspecting users by
allowing them to stumble into the program code and data structures.

Thus it is easy to assemble objects of the application interface on the display and having done that, to
use these objects to access relevant portions of the application program code and data structures. This
feature of Chips facilitates the entire software development process by providing convenient access to
the program code and data structures; "What You See Is What You Get” moreover, “"What You See

You Can Edit.”
1.3.4 Mocking Ug the Interface

Using direct manipulation, a use* creates an interface by drawing pictures of the interface objects and
arranging them on the screen in appropriate places. The interface can then be saved to a file and
recreated simply by loading the file. This allows a user to effectively mock up an application interface
without programming.

1.3.5 Establishing Relationships Between Application Objects

Chips provides explicit means for establishing connections between domain objects. Chips defines
connections between objects to reflect relationships between those objects both on the display and in
the computer. Chips also defines mechanisms which allow aspects of a domain object to be
implemented with a collection of domain objects, like the clockwork inside a clock.

1.4 Interlisp-D/Loops Implementation

Chips is an integrated extension to the Interlisp-D/Loops programming environment. Loops [Bobrow
and Stefik, 1981] provides object-oriented programming with multiple inheritance. Both Loops and
Interlisp-D {Sannella, 1985! provide a very sophisticated programming environment including
graphical browsers and program inspection facilities. They run on Xerox 1100 Series workstations.

Chips Technical Report

Chips performs well on the Xerox 1186, which is one of the least expeasive and least powerful of
workstation class computers. Inlight of this, we fel the concepts demonstrated by Chips are practical
for almost any workstation.

2. Overview

The remainder of this report discusses Chips from zeveral different perspectives. Sectivn 3, Chips
Structures, gives a detailed explanction of the major features of Chips. Sec’ion 4, Chips Interactive
Environment, provides an in depth discussion of the interactive aspects of the Chips development
environment. Section 5, A Session with Chips, preserts an example session using Chips to develop
and modify a small portion of an interface. Appendix A, Special Programming Techniques,
describes four programming techniques that we have found useful in the development of Chips:
self-inspecting code, a general purpose caching scheme, a fast bitmap intersection algorithm, and the
EditWhen macro. Appendix B, Applications, describes several systems developed at the Learning
Research and Development Center using Chips. The final section, Glossary, describes key terms used
in this report.

11

Chips Technical Report

3. Chips Structures

In this section the major components of the Chips system are presented: Domain Objects, Display
Objects, Picture Specifications, Substrates, Event Queues, Connections, Mechanisms, Event Streams,
and Display Streams. Finally, the strategy used for saving Chips objects is presented.

3.1 Domain Objects as Instances

Domain objects are instances of subclasses of the class DomainObject that combine the functionality

provided by Chips through inheritance, including: displaying themselves on the screen, animating
themselves, connecting themselves to other domain objects, defining their behavior ir. terms of other
domain objects, saving themselves to a file, and editing their behavior and properties interactivel y

3.1.1 Display Otjects’ Graphical Data Stiucture

Each instance of a subclass of DomainObject defines one or more instances of the class DisplayObject

that determine how the domain object is to be displayed. The domain object itself corresponds to an
object in the application domain, while its display object determines how the domain object will
display itself on the screen. For example, in our digital circuit editor, there isa class of domain vbject
called LightBulb. It has display objects associated with it that determine how it will sh~w up on the

screen, but the domain object instance itself determines the object’s behavior. It determines how to
process inputs, controls its display objects in response to irputs, and conpects to other domain objects.

Each class of domain object defines one or more instances of display object. These display objects are
stored on the domain object class’s IV, d isplayObiects as an association list of the form:

((tagy displayObjectinstance,) . .. (tagn displayObjectinstance,))

Each instance of a demain object class stores one or more display objects in its displayObjects IV.
These display object instances are copies of those stored on its class’s displayObjects IV. Each display

object stored with a particular domain object instance is currently displayed on the screen. When a
display object is removed from the screen, it is also removad from its corresponding ', main object.

Each display object defines a figure, mask, and map, stored in the IVs figure, mask, and map,

respectively. The figure and mask are used for displaying instances in a substrate and the map is used
for determining what part of an instance is located where, typically to see what part of a display object
has been selected with the mouse cursor.

Eachdisplay object also defines several other IVs including:

object — the domain object that the display object represents

host — the substrate instance that contains the display object

displayStream — the display stream the object is displayed on (usually whe window of its host)
position — the position in the display stream that the display object is located

editor — the editor that is used to modify the display object; usually an instance of the class
DisplayEdi:or

responsesToSelection — a form thatdetermines the display object’s response to being selected with the
mouse cursor

physicalConnectors — a list of the physical connectors associated with the display object

12 5

Chips Techaical Report

The figure, mask, and each element of the map of a display object is stored as an instance of
PictureSpecification or some subciass of PictureSpecification. Each instance of PictureSpecification

has three IVs:

displayRepresentation — the represen’ that is" used to display the picture on the screen; the
default display representation is a bitn. .owing for fast display using BITBLT

editRepresentation — a representation ibat allows the picture to be edited, presumably in a more
conveni~~* manner that the bitmap; the default edit represeatation is a list of vector graphic
commands in a format that is recognized by the Display Editor

offset — a position that describes the location of tae picture specification relative to the lower left
corner of the display object it is stored in

Thus, the actual cepresentations of the pictures are separated from the operations necessary for
displayin~ and manipulating objects on the screen. Each identical copy of a display object points to
the same , cture specification instances; new picture specitication instances are only created as
required due to local modifications made to a particular display object.

Because Interlisp-D bitmaps are rectangular and have only one bit per pixel, it takes two bitmaps to
represent a figure with a: arbitrary shape. One instance of P ~tureSpecification, the figure, defines

the way the display object will appear on the display; a second instance, the mask of the display object,
definey which areas of the display object are to be opaque and which transparent. The mask is black
only where the corresprnding location in the figure is considered opaque. For example, a SmileFace

display object might have the following figure and mask (see figure 1 below):

N
& E
(2) ' (b)
¥igare 1. (a) The figure and (b) the mask of class SmileFace

Using this scheme, it is possible to display a figure of arbitrary shape on an arbitrary background. A
simplified version of the display procedure is to erase the area where the figure is to be placed using
the mask and then paint the figure. This process is illustraced in figure 2 below.

e

e A f

PR

Y
03 b

(a) initial background () after erasing the mask (b) after painting the figure
Figure 2. Procedure for displaying andis, lay c"ject

Chips does its painting and erasing on a sepavate bitmap and then paints the result on the screen to
avoid the flicker associated with erasing from the screen. This technique is called double buffering.

Note that this procedure does not constrain the figure to be closed nor composed of a single part.
Figure 3 shows the possible combinations of figure and mask and what will be displayed on the screen
with each combination.

Background

TIWIC WIS LRARY =N\ § 3 ~W TIIC N IL /)

T NIL NIL T T
83« Ct 83¢ Design CH 83(Design

Figure 3. Displaying a figure with various masks on various backgrounds

The map is a list of elements that name the mouse-sensitive parts of the display object. Each element

contains an instance of PictureSpecification and a tag, a mnemonic way to refer to t1.» map element. -

The map is a list of the form:
(tagy PictSpecinst,
(tag, PictSpecinst;) (tags PictSpecinst;
(tagq PictSpecinst, . . .

The map is treated as a tree. The root contains the region that bounds the entire display object. The
root is followed by subregions that may in turn have subregions, and so on, that distinguish different
parts of the display object. To determine if a display object has been selected and what part was
selected, a depth-first search is performed on the map. The subregions are considered to be contained
in their region.

3.1.2 Multiple Display Objects and Multiple Picture Specificacions

In Chips, there are two ways of representing various kinds of multiple display representations with a
particular domain object: multiple display objects and multiple picture specifications.

A domain object may have more than one instance of DisplayObject associated with it, providing more
than one view onto that domain object. This could be used, for example, with a business graphics
application, with a domain object representing gross receipts having a display object that displays a
number in one window, and a barchart representation of the value displayed in another window.

A display object may also have more than one set of picture specification instances associated with it.
Each of the following IVs of display object have a property, taglist, which stores information

concerning alternate picture specification sets and the display object’s corresponding behavior when a

14 7

Chips Technical Report

particular set is used: figure, mask, map, and physicalConnectors The taglist property stores an
association list of the form:

((tag; formy) ... (tagn formp))

t} .t associates certain forms with corresponding tags. Each display object also has an IV, tag, which
stores the current tag being used.

3.1.3 Physical Connectors

Elements of a display object’s map may be physica} connectors, establishing the subregion they define
to have special significance to another display object landing on that subregion. This can be used, for
example, to establish physical attachment between display objects. In our digital circuit editor, the
display object for the ANDGate domain object (see figure 4) has threz physical connectors, two

representing the input leads of the and gate and one representing the and gate’s outpu.. When one end
ofa wire is placed on top of one of these physical connectors, the wire attaches to the associated lead.

Physical Connectors

4

]
Figure 4. Physical connectors for the display object of an ANDGate

Physical connectors are stored in the physicalConnectorsIV of a aisplay object in the form:
((PictSpecinst, position). .. (PictSpecinst,, position,))

where position is the position of the connector relative o the lower left corner of the display object.
This position is used to line up the display objects when establishing physical attachment between two
display objects.

3.1.4 Graphical Relationships

Chips provides several methods to determine graphical relationships between display objects and their
parts. These include methods to determine if a dis~lay object or one of its parts is above, below, to the
left of. or to the right of another display object or one of its parts. There are also methods to determine
if a display object or one of its parts intersects, is inside of, occludes, or obscures another display object
or one of its parts.

3.2 The Substrate

The class Substrate defines instances that create and manage windcws for displaying and
manipulating display objects. A substrate senses mouse cursor activity within its substrate window
and determines what messages to send to itself or to the instances it contains based on the location of
the mouse cursor and the Luttons that are pressed. '

Figure § below illustrates what a substrate looks like. There are two windows, a substrate window
and a prompt window. The substrate window has the title, "Substrate without a name.” The substrate
contains two display objects, one an abstract face, and the other, a text display object with the word
"Foo” contained in a box. Each display object that appears in a substrate represents some domain
object.

15

Chips Technical Report

Prompt windcw—[

Substrate window,__

‘ Background
\\ Chip instances

Figure §. A default substrate instarce co.taining two display objects

Substrates define several [Vs including:

fileComs — the name of the file variable that describes the file that the substrate instance is stored on
fileName — the name of the file the substrate instance is stored on

window — the window that the substrate instance uses to display instances of DisplayObject
contents — a list of instances of DisplayObject that are displayed by the substrate

responsesToSelection — a form that describes the response to pressing a button while the mouse

cursor is inside the window

A substrate’s window stores its Substrate instance on its window property, Loopsinstance,

Substrates keep a list of the display objects they contain. This list is used to to redisplay the window,
to find the display object under the mouse cursor, and to save the display objects and their associated
domain objects to a fil-.

The substrate instance can also save a description of itself to a file that will cre~te a window with the
same attributes'when a file containing the description is loaded into the environment. Figure 6 shows
a substrate instance for which several of the parameters, such as the border size, background shade,
and title, were changed from their default values. Modifications made to the substrate instance
interactively can be saved aad reproduced.

Sam Substrfte

Figure 6. A substrate instance with parameters different from their default values

3.3 The Event Queue

In Chips, communication between individual domain objects is handled via an event queue. Each

communication is considered an event and is posted on the queue along with a time when the event is
to occur. The events are then processed .n the order of the times declared. This allows events to be
handled asynchronously by a separate process. The event queue was initially developed to avoid the

prcblems of recursive function calling in complicated simulations [Duisberg, 1986].

Event queues are implemented by the class ChipsAnima. Each instance of the class ChipsAnima has
two [Vs:

eventQueue — a list of instances of the -ecord type, queueEvent, with associated time stainps, stored
as a skew heap

16

Chips Technical Report

eventQueueProcess — a process that continually polls the eventQueue IV to see if there is an event
whose time stamp indicates that it is time to be processed

When an event queue is established, a process is created that checks the eventQueue IV and sees if

the event on the front of the queue, if there is one, has a time stamp that has expired. If there is such
an event, the process sends the event queue the message ProcessEventQueue that removes the event

from the event queue and sends the message ChangeOccurred to the instance stored in the participant
field of the queueEvent record with the associated parameters. The default event queue, Anima, is
created when Chips is loaded. When Anima is first used, a process is created, called Anima’s Queue
Handler.

The record queueEvent has several fields, including:
participant — an instance of the class DomainObject to whom communication is to be propagated
author — an instance of the class DomainObject that initiated the communication

name — an arbitrary tag that is the name of the communication; used to establish different
communication types and to communicate information relevant to the communication

value — a value associated with a particular communication

3.4 Connections

Broadly speaking, a workstation screen normally displays a diagram consisting of windows and icons.
Inside the windows are diagrams and text. Certain relationships are implied through what is
displayed. A facility in Chips, called a connection, can be used to make an implied relationship on the
display explicit for the computer. For example, if a window contains a road map, a line connecting two
dots might indicate that there is a road between the two cities indicated by the dots. The fact that a
road, displayed as a line, leads to a city, displayed as a dot, can be recorded in a connection between the
road instance and the city instance. When the user makes a connection explicit for an application
program, Chips causes the key relationships depicted graphically to be represented internally. Thus
diagrams on the screen can have a syntax and semantics that both the user and the program share,
and that both can manipulate.

Chips provides a class, Connection, whose instances recresent relationships between instances of
subclasses of DomainObject. Each instance of Connection has three IVs:
participant\nameList — a list of the form:

((participant, .name,) . .. (participant, . name,))

where name is some arbitrary tag used for establishing some connection type, or storing information
useful for the participants in a connection, or both; participants are instances of some subclass of
DomainObject.

responsibleObject — an instance that is responsible for propagating the communication from a
domain object to the participantsina connection; the default respensible object is the Anima

timeDelay — an integer which establishes a time delay in the propagation of the connection: if
non-NIL it is added to the current time before the event is placed on the event queue, thereby causing
the ever* io wait in the event queue until its time arrives; the time delay is expressed in milliseconds

Figure 7 shows the list of participants and names for an instance of PowerSource, from our digital
circuit editor. This power source is connected to an instance of the class Wire. In this example, the

17

Chips Technical Report

name is used to determine which physical connectors of the two participants are connected, the output
of the power source and one end of the wire.

Power —

Off

((#3Wiredn?9 OQutput . endPoint2))
Figure 7. Connection between a power source and a wire

Connections store an object that is responsible for informing participants in the connection that some
change has occurred that is relevant to the connection, the defaul s the event queue. A time delay,

useful for simulations, may also be established for a connection and causes a delay before the
propagation of the change to the participant. Connections can be used to represent many kinds of
relationships between domain objects, such as physical attachment or containment.

The class ConnectionMixin provides the capability of connections to a class of domain object.

Connections are established between a domain object and other domain objects. Each instance of
DomainObject with connection capability stores a list of instances of the class Connection in anlV

called connections. When a connection is established for a particular domain object, an instance of
Cornection is created and stored with that domain object.

When a domain object wants to propagate a connection, it sends the connection instance the message
AnnounceChange, either directly or by sending itself the message PutValueWithConnection or

AnnounceChange. The connection then sends the message ChangeOccurred to the instance stored in
its responsibleObject IV for each participant in the participant/namelist [V of the connection. The
message ChangeOccurred typically takes the parameters author (the domain object initiating the
communication), participant, name, value (the value that has changed), and time (the time that the
propagation is to happen, calculated by adding the value of the timeDelay [V of the connection to the
current time).

Fieure 8 shows a simple circuit containing a power source and a light bulb. Note, in our digital circuit
editor, grounding is implicit.

A Substrate Window °

Figure 8. A simple circuit showing connections

In this example, a connection has been established between the output of the power source and one end
of the wire. Another connection has been established between the other end of the wire and the input
of the light bulb. Whenever a change is made to the output of the power source, in this case turning it
on, the change is automatically propagated, through the wire, to the input of the light bulb, which
responds to the change by lighting up.

18 i

Chips Technical Report

The responsible object of a connection is, by default, the event queue. Another kind of responsible
object provided by Chips is a Spy. Instances of the class Spy may be installed as the connection’s
responsible object and may be used to redirect connection changes or to do recording. By default, they
just beep when a connection announces a change, and then pass the message to the event queue.

When an instance of the class Spy is installed in a particular connection, the old value of the
responsibieObject IV of that connection is pushed on a stack on the [V property previousValues of the
responsibieObject IV of the connection instance. Removing a spy pops the stack, re-installing the old

responsible object. This provides an easy way to turn recording on and off during an application, for
example.

3.5 Mechanisms

It is also useful to represent the relationship between an object and its parts. The mechanism of a
domain object is a collection of instances of DomainObject, usually connec*ed together, representing

that domain object’s internal mechanism. Through the connections, the con. ction of domain objects
can act as "the clockwork inside the clock.”

The class MechanismMixin provides the ability for a domain object to have a mechanism. It provides
Vs to domain objects including:

mechanism — a list of instances of subclasses of the class DomainObject which define this domain
object’s behavior.

mechanismEditor — an instance of the class MechanismEditor, used to define and modify the
mechanism of a domain object

If a domain object class has a mechanism defined for it, whenever an instance of that class is to be
created, an isomorphic copy of the mechanism must be created, with all connections maintained.

Chips provides a Mechanism Editor to define and modify the mechanism associated with a particular
subclass of DomainObject. The class MechanismEditor is a specialization of substrate with behavior
that supports the definition of mechanisms. When the Mechanism Editor is opened, the mechanism of
the selected domain object is displayed along with an internal connector for each physical connector
defined for the domsin object. Physical connectors provide access to the domain object's internal
mechanism for other domain objects. These Physica! connectors are represented by instances of the
class InternalConnector. These instances set up a connection between the domain object’s external
connectors and its internal mechanism.

When a domain object with a mechanism is sent the message ChangeOccurred, it forwards the
message to the appropriate instance of InternalConnector, which in turn sends it to the domain object’s
that define the mechanism.

An example of the use of mechanisms is the class NANDGate, which was defined for our digital circuit
editor. Its display object is shown in figure 9.
1

Figure 9. The display object of the class NANDGate

Display objects of the rlass NANDGate have three physical connectors, two on the left for input and one

on the right for output. The class’s behavior can be defined in terms of instances of two other classes,
ANDGate and NOTGate. Figure 10 shows the mechanism of the class NANDGate.

12 i9

Chips Technical Report

Figure 10. The mechanism of the class NANDGate

Each physical connector of the class NANDGate is represented by an instance of InternalCannector,
shown in figure 10. The Mechanism Editor automatically positions the instances relative to where the
physical connector appears on the domain object’s display object.

The user create3 the mechanism for the selecied domain object class by selecting instances of the
classes of domain objects that are to be included in its definition, dragging their display objects to an
appropriate position, and connecting them with wires. The mechanism may then be saved to the
domain object’s class by selecting the Save Class Mechanism option from the substrate menu.

When an instance of NANDGate is used in a circuit, it processes signals sent to it by sending them to

the instances defining its internal mechanism, via its internal connections. Figure 11 shows a
NANDGate domain object in action.

A Suhstrate Window

Figure 11. Example using the NAND Gate

3.6 Event Streams and Display Streatus

Chips generalizes the input and output facilities of Interlisp-D to include object-oriented event
streams and display streams, providing a straightforward way of performing /O redirection.

Instances of the class EventStream may be passed to some methods expecting input from the mouse or
keyboard, such as the methad for dragging a display object around the screen, providing direct control

20 13

Chips Technical Report

of the input from either the mouse or the keyboard. The default event stream is an instance of the
class EventStream, called Mouse, which polls the mouse each time it is asked to update itself. This

class can be specialized to get coordinates from a file, calculate coordinates based on some
pre-determined path, poll the keyboard, etc.

Instances of the class DisplayStream, likewise, may be passed to certain methods that expect a display
stream on which te perform output. One useful example of this is the class BufferedDisplayStream,

which, instead of doing output directly to the screen, does its output to a scratch bitmap and displays
on the screen when sent the message, Update.

Note: we have not developed display streams very much. They are included as a pcint of departure for
further exploration.

3.7 Saving Chips Classes

When a file that contains Chips classes is saved, certain values of instance variables and class
variables may need to be specially saved. Values such as bitmaps, instances, user-datatypes, arrays,
hash tables, windows, and circular list structures will not be saved correctly without special handling.
Chips defines several methods and functions that enable these kinds of values to be saved correctly.

For one of these values to be saved correctly, the instance or class variable that they are stored on must
have a property that designates them as special. The property name may be either Instances, Ugly, or
Horrible. If the property name is Instances, it designates some value of the instance or class variable
that it is stored on as an instance or a list structure containing instances. I¢the property is Ugly or
Horrible, it designates that some value of the instance or class variable that it is stored on is some
other structure, such as a bitmap, usec-datatype, array, or hash array, needs to be treated specially. If

a value is marked as Horrible, it may contain a circular structure; if it is marked Ugly, it may not.
Marking some value as Ugly results in a large speed and internal-storage advantage over marking it
as Horrible.

Each of these properties, Instances, Ugly, or Horrible, may have values that designate which values of
their instance or class variable are to be treated specially. If the value is Value, then the instance or
class variable value is treated specially. If the value is All or Any, the instance or class variable value,
as well as any properties of the instance or class variable, are treated specially. If the value is some
other atom, it is treated as a property name, and that property of the instance or class variable is
treated specially. The value may also be a list containing any of the above values.

When a file containing Loops classes is saved, each class is sent the message FileQut to save itself to
file. Chips specializes this method, in the metaclass UglyMeta, so that it checks each instance and
class variable to determine if any of its values are to be treated specially. When a Chips class (any
class which has ChipMeta as its metaclass) is sent the message FileOut, the message is intercepted by
UglyMeta (a super class of ChipMeta). This method calls the function AddinstancesToFilevar, which
saves all values designated by the Instances property to the file variable of the file being saved. It then
encodes all values marked by the Ugly or Horrible property by printing their values to a core file, using
HPRINT, and reading them back in, using 8IN, and constructing a string representation, which is then
saved to the file.

When these files are loaded, the values marked as Lgly or Horrible must be converted back to their
original representation. This is done by printing the values to a core file, using BOUT, and read from
the core file using HREAD.

Chips Technical Report

4. Chips Interactive Environment

Chips provides a powerful environment for interactively creating and modifying direct manipulaticn
interfaces. There are two paths for developing applications that use Chips. They can be used
interchangeably as convenience suggests. The first is through a Chips Browser This browser
provides: access to the class definitions, editors for specific properties of classes, and access to the
taxonomic hierarchy of the classes of an application. The second is through the application’s own
interface. There are a number of features that support direct access through the interface to
underlying data structures, functionality, and specific properties of an interface. This section
summarizes the features of the Chips interactive environment.

4.1 Chips Icon

Botk paths of interaction are accessible through the Chipsicon. When Chips is loaded, the Chips Icon
appears on the screen (see figure 1).

= Left button: “Drag the icon”
"\ (C"P')) Middle button: “Chips options"”
% Right button: "Window options"

Figure 1. The Chips icon and its mouse button options

Selecting the Chips Icon with the middle button presents a menu of Chips options, Create a substrate,
Browse a file, Browse Saving Options, and Edit Chips Icon.

Selecting Create a substrate creates a new instance of the class Substrate and sends it the message
Initialize which prompts for a region of the screen to display the new substrate.

Selecting Browse a file presents a menuof ali the files oa the system variable FILELST. Selecting a file
namne from this menu creates an instance of the class ChipsBrowser that shows all of the classes

defined by that file. This browser may then be accessed interactively. This option has a submeau
associated with it with one selection, Browse object dependencies. Selecting this option presents a

menu of all files on the system variable FILELST. If a file name is selected, a browser of that file is
created, displaying the file name and all objects that are stored on that file’s variable (see figure 2)

Ghips Object Dependencies Browser
Joe

CHIPSTUYSI<Gretchen
DemoDomainObject

Figure 2. A browser showing the objects pointed to by the file CHIPSTOYS

In this browser, nodes representi..g file name are display in bold font with a two pixel border around
the name, class names are displayed in bold font without a border, and instances are displayed in a
regular font. Each e has several options available by selecting the node with the middle mouse
button pressed. These options are shown in figure 3.

13

Chips Technical Report

Descrine
Edit

Ghips Object DjigElsLIs
' Extend

4 nExtend
CHIPSTU\TS]<Gre chen
DemoDomainObject

ies Browser

Figure 3. Options available from the object dependencies browser

Selecting Describe from this menu prints information about the selected node including what kind of
objzct it is and what files it is stored on.

Selecting Edit from this menu invokes the Interlisp-D editor DEdit on the definition of the object
associated with the selected node.

Selecting Inspect from this menu creates an Interlisp-D inspector, inspecting the object associated
with the selected node.

Selecting Extend from chis menu extends the browser to include objects pointed to by the selected node.

Selecting UnExtend from this menu removes all objects pointed to by the selected node from the
browser.

Selecting Browse Saving Options from the Chips icon middle button menu presents a browser of saving

options that controls what actions are to occur when certain evernts occur during the use of Chips. This
browser is shown in Figure 4.

Ghips Saving Options - -
When Created
When Named
i | When Added to Substrate
. | | When Editcd

7 Prompt for Name
Generate Name
[Prompt for File

File in Default File
File With Substrate
Mark as Changed

... Do Nothing

Figure 4. The Chips Saving Options Browser

The grid in the browser allows the user to control what actions are to occur at specified events during
the use of Chips. The events are listed, horizontally, at the top of the browser while the actions to take
in response to these events are displayed vertically, to the right of the grid. Responses that are
mutually exclusive are grouped with a vertical bar connecting the mutually exclusive responses.

Chips Teehnical Report

The four events that are controlled with this browser are: When Created, When Named, When Added
to Substrate, and When Edited

When Created — whenever an instance of the class DomainObject, DisplayObject, Substrate or any of
their subclasses is created and initialized, the selected responses occur

When Named — whenever a instance is named while using Chips, the selected responses occur

When Added to Substrate — whenever a display object instance is added to a substrate, the selected
responses occur.

When Edited — whenever an instance is edited through a Chips menu, the selected responses occur

The responses that are controlled from this browser are Prom pt for Name, Generate Name, Prompt for
File, File in Default File, File With Substrate, Mark as Changed, and Do Nothing.

Prompt for Name — asks the user to enter a name foran object.
Generate Name — generates a name for an object using GENSYM and the class name of the object.
Prompt for File — asks the user to select a file in which to store the object.

File in Default File — stores the object in the default file; if the object is a class, it is stored in the file
CHIPSCLASSES, i.'it is an instance, it is stored in the file CHIPSINSTANCES.

File With Substrate — stores the object, usually a display object instance, in the same file as the
substrate it is displayed in.

Mark as Changed — marks an object as changed so that it will be recognized by the file package
Do Nothing — does nothing in response to the selected event.

Selecting the option Edit Chips Icon invokes the Interlisp-D editor, DEdit on the class Chipsicon
4.2 The Chips Browser

Chips provides a graphical browser for a class hierarchy of Chips classes that supports the creation
and management of Chips files. It is called the Chips Browser (see figure 5).

» InternaiConnecror
/ - Cockroach
. Libro
pece < DemoDomamObject
EiderDomOb|
MechanismiBancerllomObi

. Figure 5. A Chips Browser

This browser provides a graphical display of the portion of the class inheritance lattice that is defined
by a particular file. Selecting the name of a class with the mouse produces a menu for editing different
aspects of the selected class.

This browser is a specialization of the Loops class FileBrowser. The Loops browser provides options
that allow the interactive creation, modification, and examination of classes (see figure 6).

Chips Technical Report

Chipsicen
Chios 90\

Instancefile $

CHIPS tile browser k.

BoxNode

Methods (EditMathod)

Add (AddMeathod) ;

Deiete (DeleteMeattind) | .
Move (MoveMethod To) 2 TEditChip
HCopy (CopyMethodTa) >

Rename (RenameMathod)»

" ImagePlaneChip

™ FooChip

7and8.

Figure 8. Browser options provided by the Loops file browser

Specialize
AddNewMethod
SpecializeMethod

Add Display Object

Add Connection Capability
Add Mechanism Capability

Edit

DefASM
A]
BoxNcde Aggs:&\s
Methods (EditMethod) AddNewCyV
N
Deietes (DeleteMethod) AL
Move (MoveMethodTo)

Copy (CopyMethodTo) »
Rename (RenameMethod)»

ditClass

Figure 7. Options available from the Add (AddMethod) submenu

BoxNode
Methods (EditMethod)
Add (AddMethod)
Delete (DeloteMethod)
Move (MoveMethod To)
Copy (CopyMethod To)
Rename (RenameMethod)
Eait(EtClass)

There are several options that are specific to Chips,
DomainObject, including: Add Display Object, Add
Capability, Edit Display Object, Edit Response To Selection, and Edit Mechanism.

DemoDomainObject DisplayObject Specifier

Taq NIL

gss DisplayObject

figure PictureSpecification
mask PictureSpecification
map PictureSpecification

Figure 8. Options available from the Edit (EditClass) submenu

Selecting Add Display Object creates an inspector that a.iows the user to define the new dic
that will be added to the selected domain object class. This browser is shown in figure 9.

Figure 9. The Display Object Specifier

no

S5

In addition to these, we have added options specific to chips classes. These options are shown in figures

all to be used with subclasses of the class
Connection Capability, Add Mechanism

play object

Chips Technical Report

Using this inspector, the user may specify the class of display object that is to be added to the selected
domain object class along with the tag that will be used to refer to that display object and the classes of
picture specification that are to be used for the display object’s figure, mask, and map When the
display object is specified, it may be installed in the domain object class by selecting the inspector’s
title bar with the middle button pressed and selecting Install from the menu that appears.

Selecting the option Add Connection Ability establishes connection capability for the selected domain
object class. When this option is selected, Chips attempts to add the class ConnectionMixin to the
supers list of the class. This is done by sending the class the message InstallSuper, which is defined by
the metaclass AddSuperMeta. This method expects that either the class or one of its super classes has

a CV that has the same name as the super class to be added. This CV should have two properties:
fileName, which stores the file that the super class is stored on, and selectors, which stores a list of the

messages that the super class implements. InstallSuper asks to make sure that the user wants to add

the super to the selected class. If so, it checks to see if the file that implements the super is loaded, by
sending the class the inessage FileLoaded?. I the file isn’t loaded, it will load it. It then installs the

super in the super list of the class, copying any IVs with a property copyDown that has a non-NIL
value.

In addition to explicitly requesting that a capability be added, if any message is sent to a domain object
instance that it does not understand, Chips checks to see if :he message is ane that would be
understood if a certain super were added to the supers list of the domain object This is accomplished
with the AddSuperMeta class and the method DomainObject.MessageNotUnderstood. If a message is

sent to a domain object that it does not understand, the message MessageNotUnderstood is sent by
Loops to the object, which, in turn is intercepted by DomainObject.MessageNotUnderstood.
MessageNotUnderstood sends the message NewSuperSelector? to the classof the domain object. This
message is implemented by the class AddSuperMeta and looks at the domain object’s class for a CV
that has a selector on its selectors property that matches the message that was sent to the domain
object. If sucha CV exists, the message InstallSuper is sent to the Domain object’s class.

Selecting the option Add Mechanism Ability establishes mechanism capability for a class of domain
objects. When this option is selected, Chips attempts to add the class MechanismMixin to the supers
list of the domain object’s class. If the class MechanismMixin is not loaded, Chips will ask the user
whether to load the file MECHANISMS which defines the classes, instances, methods, etc., that are
required to establish a mechanism. MechanismMixin is then added to the supers list. This is done
follo ring the same procedure described atove for ConnectienMixin.

Selecting the option Edit Display Object allows the user to define how instances of a domain object class
will display themselves in a substrate. When this option is selected, it presents a menu of all dispiay
objects defined for the selected domain object class. If a display object is selected the display object is
t..en edited, using the Display Editor. If the selected display object has an instance of the class

DisplayEditor stored in its editor IV, that display editor is opened. If not, a new instance of the class
DisplayEditor is created, stored in the editor IV of the display object, and opened. In this case,
selecting Exit while using the Display Editor updates the display object associated with the domain

object class, so instances created from this class will subsequently reflect the changes made during
editing. The Display Editor is discussed in detail at the end of this section.

Selecting the option Edit Response To Selection allows the user to define the response to selecting a

particular display object with the mouse cursor while that display object is displayed in a substrate.
When this option is selected, a menu of all display objects defined for the selected domain object is

26 19

Chips Technical Report

presented. If one is selected, the Interlisp-D editor DEdit is invoked on the form that describes that
display object’s response vo sele:tion.
Selecting the option Edit Mechanism allows the user to edit the mechanism associated with the

selected class of domain object. Mechanisms provide a way to describe the behavior of a class of
domain objects in terms o. instances of other classes of domain objects, as described above.

When this option is se’ ~tod, the user is asked to sweep out a region of the screen' tv display 1
substrate, called the Meacnanism Editor. The Mechanism Editor will contain the class’s mechanism, if

one is defined.

An option has been added to the tiile bar menu of the Loops FileBrowser: Add New Class. Selecting
Ad7 New Class and sliding to the right (see Figure 10) presents a menu of Chips classes that will
frequently need to be specialized, providiry - straightforward way of creating new specializations and-
associating them with a particular file. When a class is selected, the user is asked to type in a name for
the aew specialization, which is then created, having the selected Chips class in its supers list. When a
Chipes class is specialized, all IVs of the specialized class that have a property copyDown set to a
non-NIL value are copied along with their values to the new class. This is accomplished using the
metaclass CopyOnSpecialize with the method Special:e. This method is a specialization of
Class.Specialize.

“pecialize Domain Object .
Specialize PictureSpecification
Specislize DisplayObjec®
Specialize Substrate
Specialize EventStream
Specislize Connection

4Specialize Spy

Figure 10. Creating a specialization of a Chip. class from the file browser.

4.3 Modifying an application through the development interface

This section will discuss a) how a substrate manages the display of multiple, overlapping display
objects and b) the editing options available "y selecting substrates and display objects.

4.3.1 Lisplaying overlapping display objects

To support the display of multiple, arbitrarily shaped display objects in a substrate, Chips creates the
illusion that display objects overlap one another, as though the screen had depth and somr display
objects were closer to the viewer than others. This overlapping is essentially 2 1/2 dimensional. That
*, there is no sense of absolute distance between the display object and the viewer, only that certain
display objects are closer tc the viewer than those that they overlap. Chips provides a sense of relative
depth, not absolute depth.

Each substrate instance stores a list of the display object instances it contains in the IV contents.
They are stored in order, 30 that the topmost display object is on the front of the list. Each display

Chips Technical Report

object stores an ordered list of the disolay objects that it overlaps in an IV, accludedByMe, and an
ordered list of the display objects that overlap it, in an IV, called occiudesMe. When a substrate
instance redisplays its window, it clears the window, and traverses its contents in reverse order,
sending each display object the message Draw. As mentioned in Chapter 3, display objects can be
irregularly shaped and may have holes in them.

When a display object is to move, it is sent the message PrepareToMove which, in turn, sends the
message DrawUnder, drawing all display objects that overlap the display object to a scratch bitmap. It
t'«en removes itself from all occludesMe and occludedByMe IVs of the overlapping display objects, and
finally removes everything from its own occiudesivie and occludedPyMe [Vs.

When a display object is placed in a substrate, it checks to see which display objects it overlaps and
updates itself and them accordingly, with the message InformThoselLandedOn. It also puts itself on
the front of the substrate’s contents IV, sending the subs:rate instance the message AddInfront.

Occlusion is maintained with respect to selection of a display object with the mouse cursor. When a
mouse button is pressed while the mouse cursor is in a substrate’s window, the window’s
BUTTONEVENTFN is called. The default BUTTONEVENTFN in Chips is ChipsEventFn. This function

sends the window’s substrate instance the message GetObjectAt, which traverses the contents [V of
the substrate, in order, sending each display object the message OnYou? with the coordinates of the

mouse cursor selection. If a display object was under the cursor, it is returned, otherwise the substrate
instance itself is returned. The instance that is returned is sent the message RespondToSelection.

The RespondToSelection method sends the selected irstance the message GetPartAt with the
coordinates of selection. The method GetPartAt traverses the object’s map and returns a tag,
indicating what the cursor was over wuen the mouse button was pressed. The RespondToSelection
message waen lovks at the eventResponses [V of the object to determine what to do in response to the
selection. The eventResponses IV stores a list of triples of the form:

(part howSelected whatToDo)

part is the name of a part of the instance, howSelected indicates the type of selection and is usually a
type of button, such as LEFT or MIDDLE, whatToDo is either an atom in which case it is treated as a
message name and is sent to the selected instance, or it is a form that is evaluated.

In addition to being arbitrarily shaped, display objects do not have to he entirely solid. It is possible to
define holes in the middle of a display object. This is also supported both visually and with respect to
selection with the mouse cursor.

Figure 11 shows a substrate with three display objects: the display object of the class ChocolateChip
which looks like a chocolate chip cookie, the display object of the class FooChip which looks sort of like
the man in the moon, and the display object of WasherChip which has a hole in the middle.

no
Qo

21

Chips Technical Report

Figure 11. A substrate with three overlapping display objects

In this figure, the WasherChip overlaps the ChocolateChip which in turn overlaps the FooChip. The
ChocolateChip is partizlly occluded by the WasherChip but can be seen through the hole in the
WasherChip. Selection of these display objects with the mouse cursor exactly corresponds to their
visual representation in the substrate. Selecting the part of the FooChip that is not occluded selects
this display object. Selecting any par. of the WasherChip’s display object selects it. Selecting any part
of the ChocolateChip that can be seen, including the part that is seen through the hole in the
WasherChip, selects it.

Substrates keep a list of the display object instances they contain. This list is ordered by depth; the
front-most display object instance is first. To redisplay the substrate window, the list is traversed in
reverse order so that the front most display object is displayed last. Thus, overlapping display object
instances give the illusion of depth as display object instances closer to the front occlude display objects
behind them. To determine which display object instance the mouse cursor is pointing to, the list is
searched in crder. Thus, if display object instances overlap one another, the one closest to the front is
found first.

4.3.2 Interactive editing of display object instances

By default, Chips provides a number of options available through a display object on the screen. To
perform some operation on a display object or its associated domain object, the user merely selects that
display object with the mouse cursor. This section will discuss the default options that are available
for interacting with display objects and domain objects through their pictures on the screen.

The default response to left button mouse selection of a display object is to send that display object the
message Animate, which picks it up, attaches it to the mouse cursor and allows it to be dragged around
the screen. When a display object is picked up, it first comes to the top of whatever display objects may
have been overlapping it. It then follows the mouse cursor around the screen until another mouse
button is pressed. When a display object is put dowr, 1t will, by default, overlap any display objects
that are occupying the region it is placed in. Display objects may be dragged from one place in a
substrate to another or placed in any open substrate on the screen

Dragging maintains the illusion that the user is actually manipulating the objects represented by a
particular display object. The dragging animation is very smooth with no flicker and does not
obliterate the screen.

The method that implements dragging is called Animate. Animate provides hooks for redefining what

happens when dragging a display object. To use these hooks, the user needs to specialize one or more
methods for a new class of display object.

Chips provides several options for editing the properties and behavior of a display object and its
associated domain object. These are available by selecting a display object with the middle button and

29

Chips Technical Report

choosing the editing option from a menu. When the middle button is pressed, the display object is sent
the message OfferEditOptions, which presents the menu of options. These options are acquired by
appending the results of sending the display object and its associated domain object the message
GetEditOptions. These options are roughly grouped into four categories: operations involving the
display object's properties and behavior, operations involving the associated domain object’s properties
and behavior, operations involving the connections of a domain object, and operations involving the
domain object’s mechanism. Figure 12 shows the menu of editing options available for the display
object of an instance of the class MechanismNancerDomOb;.

Delste from Substrate
Move to a 3pecific position
Orag Display Object
iinapect Gispiay Object N
Edit Display Represantation

Edit Responae to S2lection

Switch Tag

Ilame Cisplay Cbject

Z2nd Ma3sage to Display Dbject
Make Mathod Meriu for Display Cbject

A Substrate Winda

Name Domain Object
Switch Depiction
Inspect Comain Dbject

dSend message to Domain Jbject

Connect

Destroy All Connections

”/// Edit Connec“tio‘ns
v s

% Sance

: Pyt A

/ Dz Edit Mechanism
/1 A AN

Figure 12. The editing options menu for an instance of MechanismDaricerDomOb;

Editing options involving display objects

There are ten options that support editing the properties and behavicr of display objects: Delete from
Substrate, Move to a specific position, Drag Display Object, Inspect Displa'y Object, Edit Display
Reprecentation, Edit Response to Selection, Switch Tag, Name Display Object, Send Message to
Display Object, and Make Method Menu for Display Object.

Selecting the option Delete from Substrate deletes a display objest from the substrate in which it is
displayed, by sending the display object the messe DeleteFromSubstrate Deleting a display object

erases it from the screen, displaying any display objects that it overlapped, maintaining, in turn, their
overlapping with other display objects in the substrate. It also removes it from the displayObjects [V

of its associated domain object instance.

Selecting the option Move to a specific position allows the user to specify coordinates within the same
window where the display object is to be moved. The user is prompted to enter the x and y coordinates
for the move, using the Interlisp-D function RNUMBER, and the display object then removes itself from
its curent position and relocates in the position indica‘ed by the entered coordinates, sending itself
the message Move.

' 30 23

Chips Technical Report

Selecting the option Drag Display Object sends the message Animate to the display object, allowing it

to be picked up and dragged around the screen. Dragging is described in detail above. Selecting this
option is the same as selecting the display object with the left button.

Selecting the option Inspect Display Object invokes the Interlisp-D inspector on the selected display
object instance. The iuspector is window-based and allows the user to examine and modify the
properties of a particular instance of a display object class. Figure 13 shows an inspector for the

display object of an instance of the class SquareChi p.

ues uf DisplayObject $SquareDisplayObjéctCopy 002

f1ileName NIL

f1leComs NIL

fulilFile NIL

occ TudedByMe (#3MoveAwayU 1sp0b 3Copy0R15)

occ ludesMe NIL

displayStreanm {WINOOW}#377,6234

evysntdtrean NIL

figure #33quarelisp layObjectCopy@B23F 1gure
mask #33quare0isplayObjeccCopy . @23nask
nap (#33quareDisplayObjectCopy@d23Mapans
position (23 . 38)

host #5(Substrate (255 . 16248))

cdject #3SquareChip9922

editor NIL :

responsesToSelection ((map LEFT Animate) (map MIDDLE Offe
physicalConnectors NIL

Figure 13. The inspector

Selecting the option Edit Display Representation invokes the Display Editor on the selected display
object. The Display Editor will be discussed in detail below.

Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that

defines the display object's response to selection with the mouse cursor. The form is a list of triples,
each consisting of the name of a map element of the display object, a type of mouse selection (usually
either LEFT or MIDDLE), and the action to take in response to selecting the particular map element

with the particular type of mouse selection. If the action is an atom, it is treated as a message name
that is sent in reponse to the particular combination; otherwise it is treated as a form to be evaluated.
The user may alter elements, add new elements, or delete existing elements from the list, altering the
display object’s response to selection with the mouse cursor. Figure 14 below shows the response
description form for the display object of a MoveAwzyChip.

Dtdit af expression

((map LEFT Animate)

(wmap MIOOLE OfferEditOptions)

(center MIOOLE (¢ self Animate (3 ¥inEventStreaw)
(3 ¥inDrspStrean))))

Figure 14. The response description for a display object.

Selecting the option Switch Tag allows the user to switch the set of picture specification instances that

are used to display the selected display object. When thie option is selected, a menu of all tags
associated with the selected display object is presented. If a tag is selected from this menu, the new

. 2 :3'1

Chips Technical Report

picture specification instances are swapped in, becoming tne new values of the figure, mask, and map
IVs of that display object.

Selecting the option Name Display Object allows the user to give some easily remembered name to a
particulardisplay object instance.

Selecting the option Send Message to Display Object allows the user to send the selected display object

a message. When this option is selected, the user is prompted to enter the name of a message in the
substrate’s prompt window. This message is then sent to the display object, executing the associated
methed.

Selecting the option Make Method Menu creates a menu of the methods associated with the selected

display object’s class. This menu may then be used to edit particular methods with the Interlisp-D
editor.

Editing options involving domain objects

There are four options that support editing the properties and behavior of a display object’s associated
domain object: Name Domain Object, Switch Depiction, Inspect Domain Object, and Send Message to

Domain Qbject.

Selecting the option Name Domain Object allows the user to give some easily remembered name to a
particular domain object instance.

Selecting the option Switch Depiction allows the user to switch display objects for a particular domain
object. When this option is selected, a menu of the display objects associated with the selected domain
ooject’s class is presented, by sending the domain object the message AskDepiction. Selecting on-: of
these sends the display object the message ReplaceDepiction, deleting the current display object and

substituting the selected display object in the substrate at the same position. Figure 15, shows a
sequence of three substrates that demonstrat~s changing the display object of an instance of
DemoDomainObject.

mmm_mm_

S
/\‘ — .
IS ey LI
L » | { & lioe T~
(%3 (%3 z
= L sl
= = =

Figure 15. Changing the display object of DemoDomainObject

Selecting the option Inspect Domain Object invokes the Interlisp-D inspector on the domain object
instance associated with the selected display object. The inspector is window-based and allows the
user to examine and modify the properties of a particular instance of a domain object class.

Selecting the option Send Message to Domain Object allows the user to send a message to the domain

object instance associated with the selected display object. When this option is selected, the user is
rrompted to enter the name of a message in the substrate’s prompt window. This message is then sent
to the domain object, executing the 3 sociated method.

Editing options involving Connections

If the domain object associated with the selected display object has connection capability, five options
are available from the editing opt’'>ns menu that support creating and maintaining connections

o 32 25

Chips Techknical Report

between domain objects: Connect, Destroy All Connections, Edit Connections, Edit a Connection, and
Delete a Connection.

Selecting the option Connect allows the user to interactively add a new connection for the domain
object associated with the selected display object. When this is selected, the user is prompted to enter
the name of the new connection and to select the participant in the connection. The connection is then
established.

Selecting the option Destroy All Connections deletes all connections currently established for the
domain object associated with the selected display object.

Selecting the option Edit Connections allows the user to edit the connections of the domain object
associated with the selected display object. When this is selected, the Interlisp-D inspector is invoked
on the instances of Connection currently defined for the domain object.

Selecting the option Edit a Connection allows the user to specify a particular instance of Connection to
be edited. When this option is selected, a menu is presented of all participants involved in connections
with the selected domain object. If one is selected, another menu of the names of all connections that
the selected domain object and the selected participant are involved in. If both participant and name
are specified, the Interlisp-D inspector is invoked on the instance of Connection indicated.

Selecting the option Delete a Connection allows the user to interactively specify a particular
connection to be deleted. Specifying the connection is done as described above for Edit a Connection.

Once a connection has been specified, this connection is deleted from the domai.. object associated with
the selected display object.

Editing options involving Mechanisms

If the domain object associated with the selected display object has mechanism capability, an option is
available from the editing options menu that suppozts creating and maintaining the domain object’s
mechanism: Edit Mechanism. Selecting the option Edit Mechanism enables the user to edit the

mechanism that determines the selected domain object’s behavior.
4.3.3 Options available by selecting a substrate

Chips provides a number of options that are available by selecting a substrate window. These options
allow the user to interactively examine and modify important properties of substrates.

New instances of domain object classes can be created and their display objects displayed in a
s ‘bstrate by pressing a mouse button while the mouse cursor is in the background of a substrate
window. When the background is selected the message OfferNewDomainObject is sent to the
substrate instance. This method presents a menu, by sending the substrate instance the message
AskDomainObjectClass, which contains the names of all the classes of domain object currently defined
in the environment. If one is selected, an instance of that class is created and sent the message
Initialize. If there is more than one display object for the selected domain object, a menu of the display
objects is presented. If there is only one display object for the selected domain object, that one is used.
The display object is then displayed in the substrate’s window. When r:ew classes of domain object are
defined, they are automatically added to the substrate’s background menu. Figure 16 shows the
response to s¢lecting in the background of a substrate.

a3

Chips Technical Report

Andiaate
ChocolateChip
DirectedWire:“hip
OoughnutChip
FooChip
NELE ormChip

PowerSource Yo~
StraightWireChip| — { } —
TEditChip — s
YanillaChip
WireChip

Figure 16. The background menu of a substrate

Pressing the left mouse button while the mouse cursor is in the title bar of a window, sends the
associated substrate instance the mes-age OfferEditOptions, presenting a menu of editing options that
allow the user to examine and modify important properties of the selected substrate. Tlese options are
shown in figure 17.

Loac »
Collect new instances
Browse Dependencies

Save contents >

- linspect
: Edit Response to Selection
Clear Substrate

A Substrate Window

Figure 17. Title bar options of a substrate

Selecting the option Load allows the user to load a group of display objects from a file into the selected
substrate. When this option is selected, the substrate is sent the message Load, which prompts the
user to enter a file name. If a file name is ente.c.., the file is loaded into the environment and display
object instances stored on the file are displayed in the substrate’s window.

When an instance is loaded that has a value that is marked as Ugly or Horrible, such as a bitmap, it is
necessary to convert this from the form thz! was used to save it. When an instance is loaded from a

. 34 .

Chips Technical Report

file, the fanction DEFINST is called to create the instance. DEFINST sends the message Oldinstance to

the instance after it is defined. Classes whose irstences may have such values stored in some [V or [V
property have a super called UglyMixin. UglyMixin specializes the method Oldinstance to check the

new instance for values marked as Horrible or Ugly.

To designate that a particular value is Horrible or Ugly, the IV containing the value should have a
property Horrible or Ugly, which may have as its value one of the following: Value, which designates
the IV value as the ugly or horrible structure, All or Any, which designates that the [V value and all of
the IV’s properties have a structure that is horrible or ugly, a property name, which designates a
specific property as horrible or ugly, or a list containing any of the above values. If a value is
designated as Ugly, it is assumed to not have circular structures; a value that i1s marked as Horrible

may have circular structures. Marking something Ugly reslts in a large speed and internal-storage
advantage .over marking it as Horrible. When a horrible or ugly value is encountered, the method
UglyMixin.Oldinstance decodes the value by using BOUT to write the value to a core file and then
reading it from the core file using HREAD.

After each instance is read, its host IV is set to the substrate it is loaded into, its displayStream [V is
set to the substrate’s window, and each instance is added to the contents [V of the substrate. The
window is then redisplaved.

Selecting the option Collect new instances allows the user to associate the substrate and all display
objects it contains with a particular file, placing all instances on the files file variable. When this
option is selected, the user is asked to specify a file to save the substrate and its display objects on.
These instances are then added to the file variable of the specified file.

Selecting the option Browse Dependencies creates a browser window with one node representing the

substrate. This node can then be expanded further to examine the objects pointed to by the substrate.
This can be useful to discover exactly what will be saved to a file when the substrate is saved.

Selecting the option Save contents allows the user to save the display objects contained in the selected
substrate and their associated domain objects to a file. When this option is chosen, the user is
prompted to enter a file name to save to. Ifone is specified, the contents are saved to a file. They may
be loaded into another substrate later using the Load option. Saving display object instances means
that picture specification instances must be saved as well. Since picture specification instances
typically have bitmaps as values of their instance variables, these values will need to be encoded
before saving them to a file. This is accomplished by the method UglyMixin.FileOut. FileOut is a
specialization of Object.FileOut which encodes values that are marked as Ugly or Horrible. It does this
by writing the values to a core file with HPRINT and reading them in using BIN and converting them to

a string before it prints them to a file. Classes whose instances may store these values, such as
PictureSpecification, have UglyMixin as a super class.

The Save contents and substrate option is available by selecting the Save contents option, sliding to

the right, and selecting it from the submenu that appears. The user will be prompted to enter a file
name. Ifone is specified, the substrate and all of its contents will be saved to the file. When this
option is selected, a description of the substrate’s window is also saved to the file so that the window
can be recreated with all its properties intact.

Selecting the option Inspect invokes the Inter lisp-D inspector on the selected substrate’s instance.

Selecting the option Edit Response to Selection invokes the Interlisp-D editor DEdit on a form that
defines the substrate’s response to selection with the mouse cursor. The form is identical to the form

39

Chips Technical Report

described above for display objects. Figure 18 below shows a sample response description form for a
substrate,

DEdit of expressian:
((Ti1t1e0rBorder LEFT OfferEditiptions)
(T1t1e0rBorder MIDDLE AskWEd1tCommands)
(Background LEFT OfferNewChip}
(Background MIDOLE OfferNewchip))

Figure 18. The response description for a substrate.

Selecting the option Clear Substrate deletes all the display objects from a substrate and updates tke
display.

Selecting the option Name allows the user to give some easily remembered name to a particular
substrate instance.

Selecting the option Send allows the user to send a message to the selected substrate. When this
option is selected the user is prompted to enter a message name. If one is specified, that message is
sent to the substrate and the corresponding method executed.

There are two additional options available by selecting the window’s title bar with the middle mouse
button pressed: Edit Window and Edit Button Event Function.

Selecting Edit Window invokes the Window Description Editor, a modified version of the Interlisp-D

Inspector, allowing the properties of the substrate’s window to be interactively modified. This
inspector allows window properties to be interactively changed and the results seen immediately The
Window Des« ption Ediitor is shown in Figure 19.

* Window Descriptin £ditar

TITLE "4 jubstrate ¥indow

BOROLR

WINDOWT [TLESHADE NIL

REGION +133 283 96 177

HE{GHT 155

vi0Th 293

JPEN" r

(70N NIL

{1CONWINOOQw {9INDOW} 3D 15155
. [CONFN NIL

BUTTONEVENTFN ChipsE enrFn
RIGHTBYTTINFN 00wINDOWEON
VINDOWENTRYFN GLJ/E TTy PROCES

CURSORINFN NIL
SURSORIOTEN NiL
. CURSORNOVEQFN NIL
pp ITRPTAM}#33 Li'dee
SCPOLLFN NIL
SCPOLLE (TENTUZE NIL
ECTENT NiL
NO CROLLBAR: NIL
HAFOCOPYFN NIL
REPAINTFN LhipPepaIntFN
PAGEFULLFN (1
MOVEFN MOIVEATTALMED # [NDOW S

AFTEPMOVEFN NiL
CALCULATERESION NIL
INITCORNERSFN NIL

QPENFN 1PENATTACHEDWINGW S

TOTOPFN (TOPATTACHEDY INDOWS 1

RESHAPEFN ChipRepaintFN

00SMAPE N RECHAPEALL#INOUW.

NEVREG [ONFN NIL

SHRINKEN CIHPINRATTALMEOWINGDY ,

EXPANDFN € PANDATTACHEDWINOW .

CLOSEFN s SLOSEATTACHEOWINDO WS

JSERDATA 'L0prinsrance £ lun trate L, WINS'

Figure 19. The Window Description Editor

ERIC | 36 2

Aruitoxt provided by Eic:

Chips Technical Report

Selecting Edit Button Event Function invokes the Interlisp-D editor DEdit on the function that
determines the window's response to selection with the mouse cursor. The default button event
function, ChipsEventFn, merely sends the message RespondToSelection to the object that was selected
with the mouse cursor. This er.ables the user to control responses to selection through the menu
option, Edit Response to Selection, provided for display objects and substraces. Editing the button
event function directly may disable this ability but is provided to allow for more flexible determination
of a windew's response to selection.

'4.3.4 The Display Editor

The Display Editor allows the user to interactively design a display object. This is done by using a
modified version of the Interlisp-D graphical editor, Sketch, to draw what the display object should
look like when displayed on the screen. Usin . the Display Editor, the user can define both what the

display object will look like and its mouse-sensitive areas. It also provides a way to define aiternate
sets of picture specification instances for the display object and to establish a mouse-sensitive
subregion as a physical connector. The Display Editor is shown in figure 20.

PictureSpecification.Display Editar - . -
Control Panel RIS »
menu

Main
menu

Image window

Grid M
Move vie w)
HaraCopy »
Put
Get
Exit

Figure 20. The Display Editor
Instances of the class DisplayEdito- are cached on the editor IV of the displa, object that is edited.

Each display object has at least three pictures associated with it: the figure, mask, and map. The
figure picture describes what the display object will look like on the screen. The mask picture
describes which parts of the display object are opaqus. The map picture describes what part of a
display object may be selected with the mouse ¢ursor.

The main menu of the Display Editor provides graphical primitives such as circles, polygons, curves,
and closed curves plus simple operations for manipulating these graphical objects. The main menu
can be seen to the right of the main window in figure 20.

The Display Editor adds three options to the main Sketch menu: Move to picture and Copy to picture,
both available in the submenu of their corresponding main menu selections, and Exit. When one of
Move to picture o~ Copy to picture is selected, a menu of all the pictures current.y defined for the

37

Chips Technical Report

display object is presented. If one is selected, the user is then asked to select the elements to copy or
move. If one or more are selected, they are then moved or copied to the selected picture.

The exiting options are Exit and Quit. Exit saves the sketches to the editRepresentation IV of the

picture specifications of the display object being edited, creates a bitmap from the sketches, and
updates the offset of the picture specification to repesent the offset of the region occupied by the
picture’s sketch from the largest region occupied by the sketches of all pictures. Quit stops the editing,

leaving the picture specifications as they were before editing

The Display Editor also provides a control panel for moving between the various pictures of a display

object, for creating new mouse-sensitive subregions, for switching between various sets of pictures
defined for the display object, and for adding new sets of pictures to the display object. This is shown in
figure 20 to the left of the main window.

The control panel menu is split into three parts. The top part is the option Describe which prints
information in the User Exec window describing the display object and where it came from.

The next part of the control panel menu is the Pictures Menu. This allows the user to switch between
pictures by selecting a name with the left button. Selecting a picture from the control panel with the
middle mouse button pressed presents several other options. Each picture kas two options: Display
picture and Edit picture. Selecting Display picture displays the selected picture in the background of
the picture being edited, in gray. This is often useful for lining up parts of two separate planes.
Selecting Edit picture makes the selected picture the picture being edited.

The user can define new pictures, representing mcuse-sensitive subregions, for a display object. The
map and subregions are stored in the tree form used by the map of a display object. Their position in
the tree is represented in the control panel by indentation, .hose things indented further to the right
indicate that they are at a lower level of the tree. To add a new mouse-sensitive subregion, the user
selects the map or an existing subregion from the control panel with the middle mouse button pressed.
This presents a menu with several options, including Subdivide picture. If this option is selected, the
user is prompted to enter a name for the new subregion, and a new subregion picture is created, nested
within the selected region.

A subregion picture can be deleted by selecting it with the middle mouse button pressed and selecting
Delete picture from the menu that appears.

A subregion plane can be established as a physical connector by selecting Label Position from the

middle button menu. When this option is seiected, the user is prompted to select a position in the
Sketch that will serve as physical connector position for this picture. This will add the picture’s name
to the physicalConnectors IV of the disnlay object being edited when the Display Editor is exited.

The next part of the control pane! menu is the Tags Menu. This menu allows the user to switch

between editing different sets of pictures that are defined for the display object. To select a particular
set of pictures for editing, its tag is selected from the Tags Menu with the left button.

There are three options available for tags by selecting a particular tag with the middle mouse button
pressed: Add a tag, Delete, and Copy Tag. Selecting Add a tag prompts the user to enter a name for a

new tag and then creates a new set of pictures for the display object. Selecting Delete deletes the
selected tag from the display object’s definition. Copy Tag allows the user to copy an entire set of

pic*ures to another set all at once. This can be useful if two sets of pictures are to be mostly the same
with only a few differences.

Chips Technical Report

Pictures are drawn for each display object by selecting graphical primitives from the main menu and
then describing their sizes and where they are to be placed using the mouse cursor.

o 32 39

Chips Technical Report

5. A Session with Chips

In this section, we will describe a sample interaction with Chips. We will go through the creation of a
simple class of domain object, called a FaceDomainObj, to demonstrate the interactive facilities for

creating and modifying part of an interface.
5.1 Creating a new domain object

To create a new domain object class a programmer first specializes the class DomainObject. This is
done from a Chips Browser, selecting Add New Class from the title bar menu, sliding to the right, and
selecting Specialize Domain Object from the menu that appears. The selection is shown in figure 1.

Pecomgute
a3aRo0t
Zave s aue
Remo.eFromBa3Lint
ishange J13p1dy mode
Ada hieto browser
ZelecrFue

Zeecanze {19013y IDjeat
Toee.ahze Substrare
ZP2r13n2e Picture Spearih. ation
Sneciaie E.anrSrream
ZpACianZe INNection
IpecidhZe Spy

Hardcop, hie

I 3mits

Figure 1. Specializing the class DomainObject from the browser

This creates the new class, FaceDomainObj. This class will inherit the functionality and properties
needed by objects with graphical images.

5.2 Editing the display object of a class of domain object

Once this is done, a display object can be defined for this class of domain object and edited using the
Display Editor. First, to create the new display object, we select Add Domain Object from the Chips
browser (see figure 2).

Specialize
AdarewMerrog
ZperiaizeMatnoy

oxNode

Marhods [BaitMethoa, fi i ion - aDaD Ty

Machanism Capabuit
Deiete (CeiateMatnod) Aaommans o - P30ty

Move (MoveMethodTor 4. & 0.,

Copy (CopyMetnaaTs) 193520¢"

Rename (RenameMathod, adgMe wo .
ar (Editciass e w)

Figure 2. Adding a new display object

This creates an inspector that we will use to define our new display object. Since this new display

object will use the default properties, we need only declare the tag that we will use to refer to the

display object and then install the new disglay object by selecting Install from the title bar menu of the
FaceDomainObj Display!

inspector (see figure 3).
Instaii .
m default IDTO«nseelectlun
Class DisplayObject

figure PictureSpecification
mask PictureSpecification
map PictureSpecification

Figure 3. Installing a new display cbject with the Display Object Specifier

40

33

Chips Technical Report

Next, we will edit the way our new display cbject looks using the Display Editor. To do this, we select
Edit Display Object from the Chips Browser (figure 4).

o:MNoae
Methoas EarMethoa)
Addi/adaMemod)

208y +I0pyMemnaTo)
Rename Renymatiarhna

Figure 4. Invoking the Display Editor from the browser

5.2.1 Using the Display Editor

The Display Editor is a modified version of the Interlisp-D graphical editor, Sketch. It provides an
interactive way to draw and edit pictures (figu: + 5).

YITECTER e tureSpecihication Drsplay Editoe

Hhe tiirog

Plane selecto, menu

— COmmand menu

image window

Figure 5. "he Display Editor

5.2.2 Defining the figure picture of a display object

Using the graphical editor, we will first draw @ figure for the display object of the class
FaceOomainObj. This figure will consist of a circle fo-* the outline of the face, two filled circles for the

¢,es, and two curves for th- nose and mouth. The completed figure is shown in figure 6.

YITRCTE frtureSpecibic.a ion [rsplay Edroe

Figure 8. The figure picture of thy display object of FaceNomainObj
5.2.3 Defining the mask picture of a display objert

Next, we wil! define the mask picture of our display object. The easiest way to do this is to copy the
outline from the figure picture to the mask picture. This is done by selec .ing the Copy ontion {rom the

M 41

Chips Technical Report

main menu, sliding to the right and selecting Copy to picture from the submenu that appears. 1 his
preseuts a menu of pictures currently defined for this display object. Selecting mask from this menu

establishes it as the picture to be copied to. We may then select any of the graphical primitives of our
figure to be copied. We select the circle that defities the outline of our display object.

We now switch to editing the mask pictuz by selecting mask from the contro! panel. The circle that
we copied from the figure is the only thing currently defined for this picture. If this circle is filled in
completely, the display object will be completely opaque. We'll just fill in part of the circle to
demonstrate how to make part of a display object transparent. The completed mask picture is shown
in figure 7.

[Tl P tureSpecitication Display Editor *

!
3r1d »

Transparent part — aracopy

(o
B
o]
[=
o
O
[Y]
&

Figure 7. The mask picture of the display object of FazeDomainOb;

5.2.4 Defining the map picture of a display object

Next we'll define the map picture of our display object. To do this, the outline is copied to the map
picture using the procedure described above.

We switch to the map picture by selecting map from the control panel. Since we want to be able to
button on the entire display object, the outline will be filled entirely. The completed map picture is
showa in figure 8.

] - eiate
rin o »
),
Pictures - 50y »
range
Tags g
(KD

g

roup
lunGraue
L'ngo
Cefauity
3ra .
Mo e 1@ a0
Tsaralopy
'

et
,E ut ’

Figure 8. The map picture of the display object of FaceDomainObj

That completely defines our display object. Qur display object is now available for use. To continue,
we select Exit from the main menu, saving the definition of the display object to its PictureSpecification

instances.

Fal
oo

Chips Technical Report

5.3 Using a domain object with a substrate

To use this domain object, we will need a substrate in which to place it. We can get a new substrate by
selecting the Chips Icon with the middle button and selecting Create a substrate from the menu that

appears (figure 9).

Create a2 substrate <
|Browse a file)
Browse Saving Options
Edit Chipsicon

Figure 9. Creating a new substrate using the Chips Icon

Selecting in the background of this new substrate presents a menu of all domain objects currently
defined in the environment (figure 10). You will notice that FaceDomainObj has been automatically

added to this menu.

clect class of object to ackt. . . - -

A Sabistrate Windowe

[Cockroacn

DomanObrect
EiderDomOn,

® sceOormanOn
InterneiConnector

Figure 10. The default background menu of a substrate

Selecting FaceDomainQbj from this menu creates a new instance of the FaceDomainObj class and

places its display object in the substrate. We can create as many face chips as we want and olace their
display objects in the substrate. Three face chip display objects are shown in figure 11. In this figure,
Face Domain Object Number 2 is overlapping Face Domain Object Number 3. Notice that Number 2 is
partially trangparent, revealing part of Number 3 around the edges. This is a result of how we definex
our mask picture.

¥eN
o

Chips Technical Report

Face Domain

go—~_____———+— Object2
o0
[- .,»' |
—_¢ Z. < FaceDomain
TS T Object 3
(@0

Face Domain Object 1
Figure 11. Three Faces in a substrate

Selecting a display object with the left button picks it up and drags it, followirg the cursor until
another button is pressed. Display objects may be put down anywhere in the substraie or in any other
open substrate on the screen. Selectirg a display object with the middle button provides a menu of
options that allow a user to edit various aspects of the display sbject and its associated domain obj ‘ct
(figure 12). One option, Edit isplay Representatiun allows ‘he user to reenter the Display Editor,
changing any of the existing pictures or adding pictures to the displa object. We will add a picture
that declares a different button response for part of the display object. We will declare that selezt.ng
one of the eyes of this display objict sends the meczage Ouch to the domain object.

' ".C-mn from Suostraly,
L lmMou ™ a 3pecihc po aiton
- U»aQ Displey Jbjece

Inspect Cisolay Qbject
,'nme Comain Jbject

Z mten Qepiction
Inpect Domaen Dbject
Senamessege to Domain dpject

€ .itResponse ro Seiection

Switch Teg

Name Oisplay Obect

Sena Message to Oisplay D_jact
Make Methou Meny for Oi1spigy D0jec

TN

(.: ~..

——
PN

Figure 12. Selecting Edit Cisplay . .presentation from the middle button menu of a display object

5.4 Interactively changing a display object

We want to define a new picturz for thi- display object that will define an additional mouse-sensitive
region. To add this picture, we select map from the control pzael with the middle mouse button
pressed and then select Subdivide picture from the menu that appezis (figure 13)

44

37

Chips Technical Report

Figure 13. Adding a new picture to the display object of FaceDomainOb;j

The user is then prompted to enter a name for this picture. The Display Editor creates a new picture
called eyes that will be used to draw the new mouse-sensitive region for the display object. It also adds
the name eyes to the control panel. To define this picture, we need only copy the eyes from the figure
picture to the eyes picture. Copying is done as described above. The completed eyes picture is shown
in figure 14 below. Note that the eyes picture does not define the visual appearance of the eyes, which
is done by the figure picture, but merely defines a new mouse-sensitive region.

Figure 14. The eyes picture of the display object of FaceDonainOb;.

Exiting the editor redefines our display object, defining a new mouse-sensitive region. To use this
mouse-sensitive region, we must alter the display object’s response to selection with the mouse cursor.
This is done by selecting the display object with the middle mouse button pressed and selecting Edit
Respor:;e to Selection from the menu that appears. This invokes the Interlisp-I editor DEdit on a form
that describes how this display object is to respond to selection. We will add an expression to this form
that tells the display object to send the message Ouch to its associated domain object whenever one of
its eyes are selected. Figure 15 she'ws thisform.

Chips Technical Report

vomIp LEFT antmdras
m3p AI00LE)f erEgiriprisn
'8 e LEFT 1=) jpraect:
Nuch
W ono.r

Figure 15. Editing the response to selection form for a display object

When an eye is selected from one of the faces in our substrate, the message Ouch is sent to thzat domain
object and the corresponding n -thod is executed, ringing bells and printing a message in the substrate
window (figure 16).

Response to
selection

Figure 16. Selecting an eye of the display object of a face domain object
5.5 Conclusion

As you can see, using Chips, it is quite easy *» define what a piece of your interface looks like and .0
determine its response to selection with the mouse cursor. Now that we have gone this far, it is easy to
go ahead and develop the domain object’s functionality more fully using the display object on the
screen as the access point. The display object’s selection response can be changed interactively The
way the display object looks can be changed by changing the drawing. The internal data structures
and the methods A=fining a domain object’s behavior can be accessed interactively In short, the user
interface can be quickly and easily modified.

39

Chips Technical Report

References

Bobrow, D. G. and Stefik, M. The Loops manual. Tech. Note KB-VLSI-81-13. Xerox Palo Alto
Research Center, Palo Alto, CA, 1981.

Bonar, J and Cunningham, R. Bridge: An Intelligent Tutor for Thinking about Programming In
New Horizons in Intelligent Tutoring, edited by John Self, 1986.

Borning, A. The programming language aspects of ThingLab, a constraint oriented simulation
laboratory. ACM Trans. Program. Lang. Syst. 3,4 (Oct. 1981), 353-387.

Duisberg, R.. Animated graphical interfaces using temporal constraints. In Human Factors in
Computing Systems: CHI'86 Conference Proceedings (Boston, MA). ACM, New Y¢ %, 1986, pp. 83-96

Goldberg, A. J, and Robson, D. Smalltalk-80: the Language and Its Implementation, Addison-Wesley,
Reading, MA, 1983.

Hutchins, E., Hollan, J., and Norman, D. Direct Manipulation Interfaces, User Centered Systems
Design, edited by Donald Norman an Stephen Draper, Lawrence Earlbaun Asso. ites, Hillsdale, NJ,
1986.

Lesgold, A., Bonar, J., and Ivill, J. Toward Intelligent Systems for Testing University of Pittsburgh,
Learning Research and Development Center Technical Report ONR/LSP-1, March 1987

Norman, D. Design principles for human-computer interfaces. In Human Factors in Computing
Systems: CHI'83 Conferenve Proceedings (Boston, MA). ACM, New York, 1983, pp. 1-10.

Rosson, M. B, Maass, S., and Kellogg, W. A., Designing for Designers: An Analysis of Design Practice
in the Real World. In Human Factors in Computing Systems and Graphics Interface '87 Conference
Proceedings (Toronto, Canada). ACM, New York, 1987, pp. 137-142.

Sannella, M., Interlisp-D Reference Manual. Xerox Artificial Intelligence Systems, Pasadena, CA,
Oct. 1985.

Schultz, J. personal communication, 1987.
Sheil, B. Power Tools for Programmers, Datamation Maga:zine, Feb. 1983

Stefik, M., Bobrow, D., Mittal, S, and Conway, L. Knowledg: Programming in Loops: Report 2n an
Experimental Course, AI Magazine, Vol 4, No. 3, Fall 1983, p». 3-13.

47 41

Chips Technical Report

Appendix A: Special Programming Techniques

Several aspects of the Chips program code take advantage of unique features of an open Lisp-tased
environment. While the techniques described in this sectior are not part of Chips, per se, they are
interesting and generally useful.

A.1 A General Caching Function

Chips uses a function called CacheResults to be used with functions that have no side-effects (except
perhaps storage allocation) and consume large amourts of time or space to compute. CacheResults

takes a function and its arguments and returns the result of applying the function to its arguments
However if the same function and arguments are supplied to CacheResuits again, it simply return the

same result it returned previously. This function is often used for pop up menus. Creating pop up
menus is slow and it consumes large amounts of storage.

A.2 Self-Inspecting Code

When the programmer defines -. new subclass of Chip, the menu whose items are all the subclasses of
Chip becomes obsolete. There are three ways of dealing with this: one, ignore the problem and let the
programmer fix this r~enu by hand, two, modify the method for defining a new subclass so that it
updates the menu or in some way records the fact that the menu needs to be updated, or three, have
the function that produces the menu check what classes are currently defined and if new ones have
appeared, create a new menu, otherwise use the old o.1e.

Using the cache and scheme three in the preceding paragraph, it is trivial to create menus that
automatically update themselves only when necessary. W..¢n a menu is needed, the list of items that
should be on the menu is used with CacheResults. A new menu will be created only if the list is

different.

Schemes like this simplify the code. The programmer need not remember to update the list after
defining a new class; the system notices automatically.

A.3 Fast Bitmap Intersection

Frequently direct manipulation interfaces need to determine whether irregularly shaped objects
overlap. It is possible to take advantage of the fact that BITBLT is a very fast operation on Xerox 1100

Series workstations. The shadow bitmap and the relative displacement of one object from the other
are used in a series of four BITBLT operations, and one BITBLT-like operation to a scratch bitmap

Figure 1 illustrates the procedure.

48

AppendiclA

~ Appendix2A 4 9

Chips Technical Report

> Shadow A

Shadow B

Region occupied by
Shadow 1 and Shadow 2
(not constructed)

Procedure for Intersecting Bitmaps

1 Clear the scratch bitmap. 2 Paint Shadow A.
3 Erase Shadow B. 4 Invert Shadow A,
Figure 1. Intersecting hitmaps

If the scratch bitmap is blank after this procedure is executed then the two objects do not overlap. If
the scratch bitmap is not blank then the black areas will be the areas that are common to both
shalows with the given relative displacement.

It is important to note that it is not efficient to use the I nterlisp-D function BITMAP®:T to scan for black
pixels. Chips provides a function that does this scan efficiently called \BITMAPCLEARP.
A.4The EditWhen Macro

The EditWhen macro is used throughout Chips to provide uniform access to the underlying code of the
interface. The macro itself is very simple and is described below:

(EditWhen keyNameorExpr who) {Macro]
Parameters:

keyNameorExpr — either the name of a key (on the keyboard) or an expression

who — the name of a function or method

If keyMameorExpr is the name of a key, determines if the key is pressed or else keyNameorExpr is
evaluated. If the key is pressed or the expression evaluates to a non-NIL value, whichever the case,

Chips Technical Report

the function or method who is entered with all bindings set to their values during e-aluation Upon
exiting the editor, evaluation proceeds from the point of entry.

EditWhen basically allows a user to set up a conditional breakpoint in the code. We have used this

macro to provide a uniform interface to the code of Chips. Throughout Chips we have strategically (we
hope) placed calls to EditWhen that look like the following:

(EditWhen OPEN fun<tionOrMethodName)

This allows a new user of Chips to find out about the code that is used to perform various interface
functions by performing whatever action that he cr she is interested in while hoiding down the OPEN
key. So for example to examine the machinery behind figuring out how Chips determines what
graphical objects are selected by pressing a mouse button, the user needs only hold Jown the OPEN key
and then select a display object, a substrate, or whetever, with the mouse curor This will successively
open each function or method as it is called, allowing the user to examine the function or method and
then proceed by exiting the editor, continuing to hold down the OPEN key We hope this will help
people become familiar with the underlying code of Chi ...

50

Appendix3A

Chips Technical Report

Appendix B: Applications

Digital Circuit Editor and Simulator

A simple editor and simulator for digital circuits was created to help develop and demonstrate Chips
See figure 1 below (readers familiar with electric circuits may notice that the ground is missing)
Many common integrated circuit components are defined, includirg. AND gates, OR gates, NOT
gates, NAND gates, signa! sources, wires, and switches. Creating the circuit editor was easy — once
classes for circuit components were defined and their schematics were (rawn — all that was required
to build a circuit editor were a handful of methods for interactively connecting components with wires.
The input/output behavior of the primitive gates are specified as a simple logical expression in Lisp
The input/output behavior of the NAND gate is defined using a circuit consisting of an AND gate
wired to a NOT gate. Thus demonstrating that new components, like the N/.ND gate, can be dzfined
completely interactively without prcgramming using the circuit editor and other editors provided by
Chips. Signal propagation is implemented as a discrete event simulation. When a circuit component
changes state, it recomputes its outputs and if they have changed, it signals the objects it is connected
tc. Each signal is considered an event, and is placed in a global event queue by sending a message to
an event manager ohject. The event manager dispatches events in its own process so various control
regimes can be implemented.

Drptal Grout Biitor

(OR (OR (AND p q) r) (AND (NOT s) (OA t x)))

Figure 1. Adigital circuit.

51

Appendix1B

Chips Technical Report

Bridge

Bridge [Bonar and Cunningham, 1986] is an Intelligent Tutoring System to teach introductory
programming. Bridge teaches programming based on the iaea of prugramming plans. Programming
plans model the conceptual understanding which allows experienced programmers to combine several
programming language constructs into common idioms. These plans are the same for any procedural
programming language, though corresponding code would be slightly different. For example, when
writing a program it is often necessary to keep a running connt of something. The idea of keeping a
count always has certain features associated with it, such as increment*ng the counter and using the
value of the counter.

Bridge teaches programming by “bridging the gap” between a student’s understanding of specifying
procedures in a natural hing'uage like English and the understanding needed to write a procedure ina
programming language. The student works through three phases to specify a procedure in Bridge: a
natural language phase, a programming plans phase, and a programming language phase. The
stud-at may request feedback about a proposed solution at any time.

In Phase 1 of Bridge, (see figure 2), the student constructs a solution to a programming problem by
selecting and moving English phrases selected from a menu. Each phrase is a chip. These chips
format therselves when the student moves them, highlight themselves at various times, and
disappea: when the student discards the

;!\i!l? PR ARIY S RS CECRIBANDS CAY A
<

Congratulations! Your
Tl 8 corrent for

v Peea b v A8

4 AL 7 (“J'ic:;q"l)om
¢ ', thProgram”to goonto
:7‘(> Phucl?a e

Wreaa program thet ssks the
14 user if he/she would liketo
addtwo utegers. I{ the user’s

fepomse s “yes".thenteadin | -
two integers. comput” ;e sum, |-
and print out the ' gult. [fthe |
User 5 response ¢ “no”. prus

Ask . . .it he wants 0 add te0 . .gers
#theresponee is yas . . .
Read in . . . an nteger

AL A AU D NN oadvn
sooeR n v

out atheak you sywsy f: Read in .. . an integer
message. o Compute .. the sum

Prnt . . .“Thenk you snyway”

i ihe resporoe s yes .
Figure 2. Phase 1 of Bridge
In Phase 2, (see figure 3), the student constructs a solution to the problem using a visual programming

language (VPL). Each icon in the VPL corresponds to a programming plan. The student builds a
solution by assembling the programming plans much like putting together a jigsaw puzzle.

52

Q
ERICAppendix2B

IToxt Provided by ERI

Chips Technical Report

Fa.onia -ear
T e F

e fe
L. Doune with pro(ou T
g’ 3}' o Insteuctions] Frrape P
RunProgram
Start Phase) Over !
L 3
qu'gon cannot Condiinnai Plan

4. > they overiap
E‘F TN another plan.

Oerput
faput
Maa r "'_n

[y T 2

PSR vk Al : =
‘ _:.». froy

Ask . . N he wants to add two integers
ftheresponssisyes . . . s

Raad &t ... an integer te
Reed in . . . an ntege =

(]

P xJ
otharwise . . . STx -_
PERAY TN S T
:

e ek you ey ¢ o
-:“ |"- e
it

Figure 3. Phese 2 of Bridge

In Phase 3, (see figure 4), the student constructs a solution to the problem in Pascal, using a syntax
directed editor.

Appendix3B

O

Chips Technical Report

: Please
= iz - postion the
cursoe where
: 7% you would like
rert I .. .:«;\‘7 » thestatement

*xf to he.

TjHinis
Then *-.p Lgalael £ H ==ff
| g L 3.2
Topue = Ovtput
Nea Plae
Pri=e Var
= | | &= e :
o -
o 2 o 2 it ot prmeen > Then
tagut Lo
[Ancei 1
ery -
vae o
C. — L]
SN y S ANTOIY "hant eny Araarny |

Ol

Y

S . W i
Outpat LN
Pan 200
Proy ot
E OO
G 5
AN
] . L
IREEY
s *

Figure 4. Phase 3 of Bridge
We used Chips to develop the visual programming language in Phase 2 of Bridge.

To construct a prograr: using the VPL, the student moves the plans ‘round on the screen and attaches
them together by fitting a tab from one planinto a slot in another plan.

Different parts of the plans respond differently to selection by the mouse cursor. To use the value from
one plan in another part of the program, the student selects the box marked Vaiue. When this is done,

an instance of the class ValueChip is created, attached to the cursor, and may then be placed inside
another plan. Figure 5 shows a ValueChip instance that is about to be placed inside the Output Plan. .

N
e

. Appendix4B

Chips Technical Report

M

Prompt Plan
Brompt
L% Tant
“Add t
s Yue
I
[y 2 Ly 2
Conditional Plan
220 tant
cp F] @es
Nnen True Nhen Frise
T Loy 2
Output
t
lapu Plaa
Plan Prnt
TN o A g 2NN
Iapur
v Plan

Figuce 5. The Visual Programming Language from Phase 2 of Bridge

Once th student has constructed a proposed solution to the problem, the program may be executed.

As each plan is executed, it inverts. Also, as values are updated, these values animate throughout the

program to the location of their respective variables. Thus the VPL provides the student with an
. explicit view of both the control flow and the data flow during execution.

This applicatior: proved es}. .cially difficult because so little is known about the effective use of visual
N programming languages. Chips enabled us to do extensive itarative desim of the language,
developing six significantly different versions in three months.

r
N Appendix5B

CLips Technical Report

MHO

MHO is an intelligent tutoring system for teaching basic direct current circuits tha* automatically
generates problems for the student based on a model of what the student undersiands and
dependencics among the domain concepts {l.esgold 87]. See figures 6-8. Circuits and meters are
created with chips (instances, not integrated circuits). The circuit laycuts are automatically
generated. .'he student uses the meters to measure current, resistance and voltage between any two
points in the circuit.

Utiizing the calculator, determine what the reading
« from ¢ to d wil be.

. {Predict anewer

l.0
=
L
@)

me!__m =

VO = 78 inte A ON
lob ¢ 3 OFF
lod » ?

RA e L

Figure 6. A screen from MHO, un intelligent tutoring system for DC circuits.

© A dix6B
EMC ppendix 56

IToxt Provided by ERI

Chips Technical Report

Greetings! Here in exploration mode you wil be gwen
the opportursty to famsarize yourself with our tutorng
system. Thes is also a good time to become comfortable
working with the different machine capabities.

Information Wixdow

OoExercise
[S]] [osomen
. New Topic
me—_ BN | ChooseTopc
moh loteon| | _Browser
Vab 1 6804.0 Quit Tutor
icd » 189 .
Ved s 0.0 G oTfo | 1
fe s -189 E‘: ::." i\ u&)
Vhi : -1134.0 D I
& ‘ez
=
Figure 7. A screen from MHO, an intelligent tutoring system for DC circuits.
3
oy
o 07 Appendix7B

ERIC

Aruitoxt provided by Eic:

Chips Technical Keport

[=m}

2

vole | KITH

|
I
l
\

il

A B .
SN Balde e AL AP ~

Figure 8. Using a meter to measure current between pointa and point b.

F lillcxppendixSB 58

IToxt Provided by ERI

s

Chips Technical Report

Voltaville

Voltaville [Schultz, 1987; is a discovery world for students to learn about direct current circuits A
circuit simulator and simple data coliection and analysis tools are provided so that the student may
explore electricity in a systematic manner. See figure 9. Voltaville watches to see whether or not the
student actually is being systematic by searching for patterns in the student’s behavior and by
prompting the studentto: mulate and test hypotheses.

58.8 | vOLTS
N ~ape [ire | has
-2 ©
. /
ab s 1.2 Adf = -9.0 Afg » 98 Enter Readng
Vac s 48 Pbc s 40 lcis 1.2 =2 Dowebeon
Abc s+ 4.0 Ref 1 -9.0 Pkd » 9.0
Vdc » 4.8 feg » .8 §.48 - J
ide = 6 A = 1.0 Vd » 48 a Labet
Figure 9. Measuring a circuit in the Voltaville discovery world.
Chips was used to build ~ circuit editor and simulator, and se=eral animated simulations to illustra‘e
concepts such as current flow. The animated simulations are part of a hypertext system of electricity
concepts, which students can browse for background information, terms, and corcepts. Students
obtain a paragraph with illustrations by selecting a term from a menu, from a graph iliustrating
?

o 0 Appendix9B

Chips Technical Report

relationships between concepts, or from a concept description that contains mouse-sensitive terms.

we e

If you weuld ke te see seme basic definitions oW, you a1 select the definition you want fram erther the tres or the
ligh low. When yeu are lsaking ata definition aardl,

youm ayses some boldiaced wordsiphrases. If you selecta
won'iphrase, its defintten will be displayed. Tat segin, select an tam from the list or tres. When you have
finished iseking at definitiens, smiect CONTINUE from the lis ¢

. L T
___7""/" N -
[] 14 LXAMPLE LACUIT
CURRENT VOLTASE SOURCE .7!{0 i SEmES uﬁ:u PARALLEL CIRCU i
- X

’ N
AMPIRE AMMETER VT VOLTMETER

vvvvv

—Mol——
-
i
4
i

VW
<
%
H
R

(2 Coreunt
CON TINUE

Start Series Simulstion Start Paralle! Simulation

] Thia smulation diustrates the motion of slectrons N a series and
persiiel cwrcuit Both sircuits heve the same voltage source

Both the resistors have the same resistence For s« npheity, we N
show only two charge Sarrying electrons moving thr ougr e
the circuit once '

e 3 Lol .

v S e LR SR R A RN 3 R AT ~ . . LR

Figure 10. A screen from Voltaville, a discovery world for DC circuits.

The window labelled "Simulation with Charges” in figure 10, displays an animation sequence. Snap
shots of the animation are shown in figure 11.

Figure 11. A simulation explaining current flow by animating electrons.

i
Li
'V

0

+
i '

+

——

60

F lillc‘\ppendixlOB

Glossary

ANDgatec.oooee o

application inteiface

classlibrary...............c..c.c........
connection....................oooeo.

development interface..............
direct manipulation..................

direct manipulation interface ..

inspectorceovrnnnnn,
instance........cccoeovvnnnnn..
Interlisp-D.........coovvvi

InternalConnector..................

Chips Techn:cal Report

a componen. . a digital logic circuit with two inputs and one output; if
both inputs are true then the output is true. otherwise the output is
false; see also NOT gate

the human/computer interface to a particular application

v. to press one of the buttons of the mouse

a computer program for building graphical human/computer
interfaces

a template for a particular kind of object including methods for
responding to messages and v~riables

a tool for examining and modifying classes and their taxonomic
relationships via a lattice diagram of classes in Loops

a collection of class definiticus designed for some common purpose
a data structure provided by Chips for representing relationships
between objects

the human/computer interface used to develop an application nrogram

a method for a person to contrcl a comzute: program by manipulating
pictures that represent objects of interest

a human/computer interface that allows the user to command the
cumputer by selecting and manipulating cartoon ‘ike icons, usually
with a pointing device, such asa mouse (see direct manipulation)

n. the screen of the comp- ter; v. to depict on the screen of the computer
an instance of the class LisplayObject or one of its subclasses;
determines how a domain object will be displayed on the screei:

an instance of a subclass of the class DomainObject

a class of object that can be disnlayed as a mouse-sensitive picture

to move a picture of an object on the display by animating it

an interactive program for creating, displaying and modifying some
entity of interest; usually maintains constraints that would be tedious
to maintain by hand and provides a convenient intei face to the entity
a queue of messages with time-stamps to be sent by an event queue
process in an order consistent with the time-stamps

a description of how a display cbject is displayed on the screen; stored
as an instance of the class PictureSpecification

programming language functions or menu options for drawing lines,
curves, and text, etc. on the display

a picture used in a human/computer interface to represent some object
or concept in the world

a specialization of the Interlisp-D graphical editor, Sketch, which
allows a user to interactively design the looks of a particular display
object

an aspect of object of object-oriented programming When a new class
is created by specializing another class, it receives behavior from ;ts
super class

& tool for examining and modifying data structures in Interlisp-D

an object in the computer produced by a class

a programming environment which provides sophisticated graphical
programming tools for the interlisp programming language
implemented on workstations

a class of domain object that establishes a conneci.ion between the
physical connectcrs of a domain object and its internal mechanism

6 1 Glossaryl

Chips Technical Report

IV e,

mouse-sensitive picture

multiple inheritance

object-oriented programming ..

picture specification

stbmenu ...

subregion
Substrate ...

~ Glossary2

i.e., instance variable; a variable associated with an object whose value
is local to th.at object

an object oriented programming language and tools for program
development integrated with Interlisp-D

a list of elements, instances of the class PictureSpecification with
mnemonic tags, that name different partsof a display object;
determines the mouse-sensitive regivr ofa display object

a description of which areas of a display object are to be opaque and
which are transparent; stored as an instance of the class
PictureSpecification

a command to an object

a collection of domai . object instanc=s, usually connected together,
representing a domain object’s internal behavior

a specialized substrate for editinrg a domain object’s mechanism

a subroutine used by an object upon receipt of a particular message -
pressing or releasing one or more of the mouse buttons

an area of the workstation’s display which can be selected with the
mouse to produce some effect

a picture (usually associated with an object) which can be selected with
the mouse to produce some effect

a capability provided by some object oriented systems, including Loops,
which allows classes to inherit from more than one class

a component of a digital logic circuit with two inputs and one output; if
both inputs are true then t..e output is false, otherwise the output is
true; . AND is an abbreviation for Not AND; see also AND gate, NOT
gate .

a component of a digital logic circuit with one input and one output; if
the input is true then the output is false, otherwise the output is true;
see also AND gate

an instance or class (see class, instance)

a programming methodology based on the metaphor of communicating
objects, rather than procedures that operate on data types (see class,
instance, message, method)

an instance of the class PictureSpecification or one of its subclasses
t!;at defines the display and edit representations for part of adisplay
object

a mouse-sensitive region of a display object that has special
significance to other display objects that may overlap it;usedto * .
establish physical attachment between dispiay objects

represents part of a display object in the Image Eaitor

to move the mouse cursor to something of interest and press one of the .|,
meuse buttons

the Interlisp-D drawing editor; allows the user to interactively
construct figures from graphical primitives

to define a new class or method in terms of 2n existing class or metkod
an instance of the class Spy or one of its subclasses that may be used
with a connection to redirect /O or do recording of messages sent via
connections

a menu that appear when the mouse cursor is slide out the right-hand
edge of certain menu items indicated by a grey triangle (»)

& region within a region; may be arbiirarily shaped

a class of object appearing on the display as a rectangular window and
vsed for displaying display objects, displaying prompts and processing
mouse events

62

Chips Technical Report

user interface a computer program that provides a collection of
management system interface elements. such as menus and dialog boxes; often include
interactive tools for building prototype interfaces
workstation............ a single-user computer with a large graphics display, several
megabytes of memory, a processor capable of at least onc ailion
instructions per second, and a device for pointing to objects on the
display, such as a mouse

Glossary3

